
CHAPTER t..I 

INNER PRODUCT SPACES. 
HILBERT SPACES 

In a normed space we can add vectors and mUltiply vectors by scalars, 
just as in elementary vector algebra. Furthermore, the norm on such a 
space generalizes the elementary concept of the length of a vector. 
However, what is still missing in a general normed space, and what we 
would like to have if possible, is an analogue of the familiar dot 
product 

and resulting formulas, notably 

and the condition for orthogonality (perpendicularity) 

a· b=O 

which are important tools in many applications. Hence the question 
arises whether the dot product and orthogonality can be generalized to 
arbitrary vector spaces. In fact, this can be done and leads to inner 
product spaces and complete inner product spaces, called Hilbert 
spaces. 

Inner product spaces are special normed spaces, as we shall see. 
Historically they are older than general normed spaces. Their theory is 
richer and retains many features of Euclidean space, a central concept 
being orthogonality. In fact, inner product spaces are probably the 
most natural generalization of Euclidean space, and the reader should 
note the great harmony and beauty of the concepts and proofs in this 
field. The whole theory was initiated by the work of D. Hilbert (1912) 
on integral equations. The currently used geometrical notation and 
terminology is analogous to that of Euclidean geometry and was 
coined by E. Schmidt (1908), who followed a suggestion of G. Ko­
walewski (as he mentioned on p. 56 of his paper). These spaces have 
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been, up to now, the most useful spaces in practical applications of 
functional analysis. 

Important concepts, brief orientation about main content 
An inner product space X (Def. 3.1-1) is a vector space with an 

inner product (x, y) defined on it. The latter generalizes the dot product 
of vectors in three dimensional space and is used to define 

(I) a norm 11·11 by Ilxll=(x, X)1/2, 

(II) orthogonality by (x, y) = O. 
A Hilbert space H is a complete inner product space. The theory of 
inner product ap.d Hilbert spaces is richer than that of general normed 
and Banach spaces. Distinguishing features are 

(i) representations of H as a direct sum of a closed subspace and 
its orthogonal complement (d. 3.3-4), 

(ii) orthonormal sets and sequences and corresponding representa­
tions of elements of H (d. Secs. 3.4, 3.5), 

(iii) the Riesz representation 3.8-1 of bounded linear functionals 
by inner products, 

(iv) the Hilbert-adjoint operator T* of a bounded linear operator 
T (d. 3.9-1). 

Orthonormal sets and sequences are truly interesting only if they 
are total (Sec. 3.6). Hilbert-adjoint operators can be used to define 
classes of operators (self-adjoint, unitary, normal; d. Sec. 3.10) which 
are of great impor~ance in applications. 

3.1 Inner Product Space. Hilbert Space 

The spaces to be considered in this chapter are defined as follows. 

3.1-1 Definition (Inner product space, Hllbert space). An inner prod­
uct space (or pre-Hilbert space) is a vector space X with an inner 
product defined on X. A Hilbert space is a complete inner product 
space (complete in the metric defined by the inner product; d. (2), 
below). Here, an inner product on X is a mapping of XxX into the 
scalar field K of X; that is, with every pair of vectors x and y there is 
associated a scalar which is written 

(x, y) 



3.1 Inner Product Space. Hilbert Space 129 

and is called the inner product l of x and y, such that for all vectors x, y, 
z and scalars a we have 

(lPl) (x+y, z)=(x, z)+(y, z) 

(lP2) (ax, y)=a(x, y) 

(IP3) (x, y)=(y, x) 

(x,x)~O 
(IP4) 

(x, x) = 0 ¢::? x=O. 

An inner product on X defines a norm on X given by 

(1) IIxll = v'(x, x) (~O) 

and a metric on X given by 

(2) d(x, y) = Ilx - yll = v'(x - y, x - y). I 

Hence inner product spaces are normed spaces, and Hilbert spaces 
are Banach spaces. 

In (IP3), the bar denotes complex conjugation. Consequently, if X 
is a real vector space, we simply have 

(x, y) = (y, x) (Symmetry). 

The proof that (1) satisfies the axioms (Nl) to (N4) of a norm (cf. 
Sec. 2.2) will be given at the beginning of the next section. 

From (IP1) to (IP3) we obtain the formula 

(a) 

(3) (b) 

(c) 

(ax + {3y, z) = a(x, z)+ {3(y, z) 

(x, ay) = a(x, y) 

(x, ay + {3z) = a(x, y)+ jj(x, z) 

1 Or scalar product, but this must not be confused with the product of a vector by a 
scalar in a vector space. 

The notation ( , ) for the inner product is quite common. In an elementary text such 
as the present one it may have the advantage over another popular notation, ( , ), that it 
excludes confusion with ordered pairs (components of a vector, elements of a product 
space, arguments of functions depending on two variables, etc.). 
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which we shall use quite often. (3a) shows that the inner product is 
linear in the first factor. Since in (3c) we have complex conjugates ii 
and Ii on the right, we say that the inner product is conjugate linear in 
the second factor. Expressing both properties together, we say that the 
inner product is sesquilinear. This means "1~ times linear" and is 
motivated by the fact that "conjugate linear" is also known as 
"semilinear" (meaning "halftinear"), a less suggestive term which we 
shall not use. 

The reader may show by a simple straightforward calculation that 
a norm on an inner product space satisfies the important parallelogram 
equality 

(4) 

This name is suggested by elementary geometry, as we see from Fig. 
23 if we remember that the norm generalizes the elementary concept 
of the length of a vector (cf. Sec. 2.2). It is quite remarkable that such 
an equation continues to hold in our present much more general 
setting. 

We conclude that if a norm does not satisfy (4), it cannot be 
obtained from an inner product by the use of (1). Such norms do exist; 
examples will be given below. Without risking misunderstandings we 
may thus say: 

Not all normed spaces are inner product spaces. 

Before we consider examples, let us define the concept of or­
thogonality, which is basic in the whole theory. We know that if the 
dot product of two vectors in three dimensional spaces is· zero, the 
vectors are orthogonal, that is, they are perpendicular or at least one of 
them is the zero vector. This suggests and motivates the following 

Fig. 23. Parallelogram with sides x arid y in the plane 
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3.1-2 Definition (Orthogonality). An element x of an inner product 
space X is said to be orthogonal to an element y E X if 

(x, y)=O. 

We also say that x and yare orthogonal, and we write X.ly. Similarly, 
for subsets A, B c X we write x.l A if x.i a for all a E A, and A.l B if 
a.l b for all a E A and all b E B. I 

Examples 

3.1-3 Euclidean space Rn. The space an is a Hilbert space with inner 
product defined by 

(5) (x, y) = ~1 TIl + ... + ~nTln 

where x ='(~j) = (6, ... , ~n) and y = (Tlj) = (1)1. ... , TIn). 
In fact, from (5) we obtain 

and from this the Euclidean metric defined by 

cf. 2.2-2. Completeness was shown in 1.5~1. 
If n = 3, formula (5) gives the usual dot product 

of x = (~1. ~2' ~3J and y = (TIl. Tl2, Tl3), and the orthogonality 

(x, y) = x • y = 0 

agrees with the elementary concept of perpendicularity. 

3.1-4 Unitary space en. The space en defined in 2.2-2 is a Hilbert 
space with inner product given by 

(6) 
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In fact, from (6) we obtain the norm defined by 

Here we also see why we have to take complex conjugates ijj in (6); 
this entails (y, x) = (x, y), which is (IP3) , so that (x, x) is real. 

3.1-5 Space e[a, b]. The norm in Example 2.2-7 is defined by 

(1 b )1/2 
\ IIxll = a X(t)2 dt 

and can be obtained from the inner product defined by 

(7) (x, y)= f X(t)y(t) dt. 

In Example 2.2-7 the functions were assumed to be real-valued, 
for simplicity. In connection with certain applications it is advanta­
geous to remove that restriction and consider complex-valued functions 
(keeping tE[a, b] real, as before). These functions form a complex 
vector space, which becomes an inner product space if we define 

(7*) (x,y)= fX(t)y(t)dt. 

Here the bar denotes the complex conjugate. It has the effect that 
(IP3) holds, so that (x, x) is still real. This property is again needed in 
connection with the norm, which is now defined by 

(1 b )1/2 
IIxll = a Ix(tW dt 

because x(t)x(t) = Ix(tW. 
The completion of the metric space corresponding to (7) is the real 

space L2[a, b]; cf. 2.2-7. Similarly, the completion of the metric space 
corresponding to (7*) is called the complex space L2[a, b]. We shall see 
in the next section that the inner product can be extended from an 
inner product space to its completion. Together with our present 
discussion this implies that L2[a, b] is a Hilbert'space. 
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3.1-6 Hilbert sequence space e. The space e (cf. 2.2-3) is a Hilbert 
space with inner product defined by 

00 

(8) (x, y) = L ~jijj. 
j=1 

Convergence of this series follows from the Cauchy-Schwarz inequality 
(11), Sec. 1.2, and the fact that x, y E l2, by assumption. We see that (8) 
generalizes (6). The norm is defined by 

( 

00 )1/2 
Ilxll = (x, X)1/2 = j~1 I~l . 

Completeness was shown in 1.5-4. 
e is the prototype of a Hilbert space. It was introduced and 

investigated by D. Hilbert (1912) in his work on integral equations. An 
axiomatic definition of Hilbert space was not given until much later, by 
J. von Neumann (1927), pp. 15-17, in a paper on the mathematical 
foundation of quantum mechanics. Cf. also J. von Neumann (1929-
30), pp. 63-66, and M. H. Stone (1932), pp. 3-4. That definition 
included separability, a condition which was later dropped from the 
definition when H. LOwig (1934), F. Rellich (1934) and F. Riesz 
(1934) showed that for most parts of the theory that condition was an 
unnecessary restriction. (These papers are listed in Appendix 3.) 

3.1-7 Space ip. The space lP with p~ 2 is not an inner product space, 
hence not a Hilbert space. 

Proof. Our statement means that the norm of lP with p ~ 2 
cannot be obtained from an inner product. We prove this by showing 
that the norm does not satisfy the parallelogram equality (4). In fact, 
let us take x = (1,1,0,0,· . ·)E lP and y = (1, -1, 0, 0,· . ·)E lP and 
calculate 

IIx + yll=lIx - yll = 2. 

We now see that (4) is not satisfied if p ~ 2. 
lP is complete (cf. 1.5-4). Hence lP with p~ 2 is a Banach space 

which is not a Hilbert space. The same holds for the space in the next 
example. 
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3.1-8 Space C[a, b]. The space C[a, b] is not an inner product space, 
hence not a Hilbert spa·ce. 

Proof. We show that the norm defined by 

Ilxll = max Ix(t)1 '\ 
tEJ \) 

J=[a, b] 

cannot be obtained from an inner product since this norm does not 
satisfy the parallelogram equality (4). Indeed, if we take x(t) = 1 and 
y(t) = (t- a)/(b - a), we have Ilxll = 1, Ilyll = 1 and 

t-a 
x(t)+y(t)=I+ b _a 

t-a 
x(t) - y(t) = 1---. 

b-a 

Hence Ilx + yll = 2, Ilx - yll = 1 and 

Ilx + YI12+llx_ Ylf= 5 but 

This completes the proof. • 

We finally mention the following interesting fact. We know that to 
an inner product there corresponds a norm which is given by (1). It is 
remarkable that, conversely, we can "rediscover" the inner product 
from the corresponding norm. In fact, the reader may verify by 
straightforward calculation that for a real inner product space we have 

(9) (x, y) =i(llx + ylf-Ilx - Y1l2) 

and for a complex inner product space we have 

(10) 
Re (x, y) = i(lIx + Yl12 -llx _ Y112) 
1m (x, y) = i(lIx + iyjI2 -llx _ iyjI2). 

Formula (10) is sometimes called the polarizatitJn identity. 
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Problems 

1. Prove (4). 

2. (Pythagorean theorem) If x.L y in an inner product space X, show 
that (Fig. 24) 

Extend the formula to m mutually orthogonal vectors. 

Fig. 24. Illustration of the Pythagorean theorem in the plane 

3. If X in Prob. 2 is real, show that, conversely, the given relation implies 
that x.L y. Show that this may not hold if X is complex. Give examples. 

4. If an inner product space X is real, show that the condition Ilxll = Ilyll 
implies (x + y, x - y) = O. What does this mean geometrically if X = R2? 
What does the condition imply if X is complex? 

5. (Appolonius' identity) Verify by direct calculation that for any ele­
ments in an inner product space, 

Show that this identity can also be obtained from the parallelogram 
equality. 

6. Let x~ 0 and y~ O. (a) If x.L y, show that {x, y} is a linearly independ­
ent set. (b) Extend the result to mutually orthogonal nonzero vectors 

7. If in an inner product space, (x, u)=(x, v) for all x, show that u = v. 

8. Prove (9). 

9. Prove (10). 
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10. Let Zl and Z2 denote complex numbers. Show that (Zl> Z2) = ZlZ2 

defines an inner product, which yields the usual metric on the complex 
plane. Under what condition do we have orthogonality? 

11. Let X be the vector space of all ordered pairs of complex numbers. 
Can we obtain the norm defined on -X by 

(' 

Ilxll = Ig{1 + Ig21 

from an inner product? 

12. What is Ilxll in 3.1-6 if x = (gh g2, ... ), where (a) gn = Z-n/2, 
(b) gn = lIn? 

13. Verify that for continuous functions the inner product in 3.1-5 satisfies 
(IP1) to (IP4). 

14. Show that the norm on C[a, b] is invariant under a linear transforma­
tion t = aT + (3. Use this to prove the statement in 3.1-8 by mapping 

[a, b] onto [0, 1] and then consldermg the functions defined by 
X(T) = 1, Y(T) = T, where T E [0,1]' 

15. If X is a finite dimensional vector space and (ei) is a basis for X, show 
that an inner product on X is completely determined by its values 
'Yik = (ei' ek). Can we choose such scalars 'Yik in a completely arbitrary 
fashion? 

3.2 Further Properties of Inner Product Spaces 

First of all, we should verify that (1) in the preceding section defines a 
norm: 

(Nl) and (N2) in Sec. 2.2 follow from (IP4). Furthermore, (N3) is 
obtained by the use of (IP2) and (IP3); in fact, 

IIaxl12 = (ax, ax) = aa(x, x} = la 1211xlf· 

Finally, (N4) is included in 

3.2·1 Lemma (Schwarz inequality, triangle inequality). An inner prod­
uct and the co"esponding norm satisfy the Schwarz inequality and the 
triangle inequality as follows. 
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(1) 

(2) 

(a) We have 

I(x, y)1 ~ Ilx1111Y11 (Schwarz inequality) 

where the equality sign holds if and only if {x, y} is a linearly 
dependent set. 

(b) That norm also satisfies 

Ilx + yll ~ Ilxll + IIYII (Triangle inequality) 

where the equality sign holds if and only it y = 0 or x = cy 
(c real and ~O). 

Proof. (a) If y = 0, then (1) holds since (x, 0) = O. Let y'" O. For 
every scalar a we have 

O~ Ilx _aY112 = (x -ay, x -ay) 

=(x, x)-li(x, y)-a[(y, x)-li(y, y)]. 

We see that the expression in the brackets [ ... ] is zero if we choose 
Ii = (y, x)/(y, y). The remaining inequality is 

0 « ) (y,x)( )_11112 l(x,yW. 
= x, x - (y, y) x, y - x - IIyl12 , 

here we used (y, x) = (x, y). Multiplying by Ily112, transferring the last 
term to the left and taking square roots, we obtain (1). 

Equality holds in this derivation if and only if y = 0 or 
0= Ilx - ay112, hence x - ay = 0, so that x = ay, which shows linear 
dependence. 

(b) We prove (2). We have 

By the Schwarz inequality, 

I(x, y)1 = I(y, x)1 ~ Ilxllllyll· 

.2 Note that this condition for equality is perfectly "symmetric" in x and y since 
x = 0 is included in x = ey (for c = 0) and so is y = kx, k = lIe (for e > 0), 
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By the triangle inequality for numbers we thus obtain 

Ilx+yIl2~llxI12+21(x, y)I+llyI12 

~llxIl2+21Ixllllyll+llyI12 

= (1lxli + IlylV 
Taking square roots on both sides, we have (2). 

Equality holds in this derivation if and only if 

(x, y) + (y: ~) = 211xllllyll. 
The left-hand side is 2 Re (x, y), where Re denotes the real part. From 
this and (1), 

(3) Re (x, y) = IlxlIIIYII~ I(x, Y)I· 
Since the real part of a complex number cannot exceed the absolute 
value, we must have equality, which implies linear dependence by part 
(a), say, y = 0 or x = cy. We show that c is real and ~ O. From (3) with 
the equality sign we have Re(x, y)=I(x, y)l. But if the real part of a 
complex number equals the absolute value, the imaginary part must be 
zero. Hence (x, y)=Re(x, y)~O by (3), and c~O follows from 

O~(x, y)=(cy, y)= c IIYI12. I 

The Schwarz inequality (1) is quite important and will be used in 
proofs over and over again. Another frequently used property is the 
continuity of the inner product: 

3.2-2 Lemma (Continuity of inner product). If in an inner product 
space, Xn - x and Yn - y, then (xn, Yn)- (x, y). 

Proof. Subtracting and adding a term, using the triangle inequal­
ity for numbers and, finally, the Schwarz inequality, we obtain 

I(xm Yn)-(x, y)1 = I(xn, Yn)-(Xn, y)+(xn, y)-(x, y)1 

~ I(xn, Yn - y)1 + I(xn - x, y)1 

~ IlxnllllYn - yll + Ilxn - xlillyll 

since Yn - Y - 0 and Xn - x - 0 as n _ OJ. I 

o 
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As a first application of this lemma, let us prove that every inner 
product space can be completed. The completion is a Hilbert space and 
is unique except for isomorphisms. Here the definition of an isomor­
phism is as follows (as suggested by our discussion in Sec. 2.8). 

An isomorphism T of an inner product space X onto an inner 
product space X over the same field is a bijective linear operator 
T: X ~ X which preserves the inner product, that is, for all 
X,YEX, 

(Tx, Ty) = (x, y), 

where we denoted inner products on X and X by the same symbol, for 
simplicity. X is then called isomorphic with X, and X and X are called 
isomorphic inner product spaces. Note that the bijectivity and linearity 
guarantees that T is a vector space isomorphism of X onto X, so that T 
preserves the whole structure of inner product space. T is also an 
isometry of X onto X because distances in X and X are determined by 
the norms defined by the inner products on X and X. 

The theorem about the completion of an inner product space can 
now be stated as follows. 

3.2-3 Theorem (Completion). For any inner product space X there 
exists a Hilbert space H and an isomorphism A from X onto a dense 
subspace We H. The space H is unique except for isomorphisms. 

Proof. By Theorem 2.3-2 there exists a Banach space H and an 
isometry A from X onto a subspace W of H which is dense in H. For 
reasons of continuity, under such an isometry, sums and scalar multi­
ples of elements in X and W correspond to each other, so that A is 
even an isomorphism of X onto W, both regarded as normed spaces. 
Lemma 3.2-2 shows that we can define an inner product on H by 
setting 

the notations being as in Theorem 2.3-2 (and 1.6-2), that is, (xn) and 
(Yn) are representatives of x E Hand Y E H, respectively. Taking (9) 
and (10), Sec. 3.1, into account, we see that A is an isomorphism of X 
onto W, both regarded as inner product spaces. 

. Theorem 2.3-2 also guarantees that H is unique except for 
isometries, that is, two completions Hand fI of X are related by an 



140 Inner Product Spaces. Hilbert Spaces 

isometry T: H -- H. Reasoning as in the case of A, we conclude 
that T must be an isomorphism of the Hilbert space H onto the 
Hilbert space H. • 

A subspace Y of an inner product space X is defined to be a 
vector subspace of X (cf. Sec. 2.1) taken with the inner product on X 
restricted to Y x Y. \ " 

Similarly, a subspace Y of a Hilbert space H is defined to be a 
subspace of H, regarded as an inner product space. Note that Y need 
not be a Hilbert space because Y may not be complete. In fact, from 
Theorems 2.3-1 and 2.4-2 we immediately have the statements (a) and 
(b) in the following theorem. 

3.2-4 Theorem (Subspace). Let Y be a subspace of a Hilbert space H. 
Then: 

(a) Y is complete if and only if Y is closed in H. 

(b) If Y is finite dimensional, then Y is complete. 

(c) If H is separable, so is Y. More generally, every subset of a 
separable inner product space is separable. 

The simple proof of (c) is left to the reader. 

Problems 

1. What is the Schwarz inequality in a 2 or a 3 ? Give another proof of it in 
these cases. 

2. Give examples of subspaces of f. 

3. Let X be the inner product space consisting of the polynomial x = 0 
(cf. the remark in Prob. 9, Sec. 2.9) and all real polynomials in t, of 
degree not exceeding 2, considered for real t E [a, b], with inner product 
defined by (7), Sec. 3.1. Show that X is complete. Let Y consist of all 
x E X such that x(a) = O. Is Y a subspace of X? Do all x E X of degree 
2 form a subspace of X? 

4. Show that y.Lx" and x" -- x together imply x.Ly. 

S. Show that for a sequence (x,,) in an inner product space the conditions 
Ilx"II--llxll and (x"' x) -- (x, x) imply convergence x. -- x. 
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6. Prove the statement in Prob. 5 for the special case of the complex 
plane. 

7. Show that in an inner product space, x.l.. y if and only if we have 
Ilx + ayll = Ilx - ayll for all scalars a. (See Fig. 25.) 

x + O'y 

y 

~ _____ ~x 

x - O'y 

I x + O'y I '* I x - O'y I 

Fig. 25. Illustration of Prob. 7 in the Euclidean plane R2 

8. Show that in an inner product space, x.l.. y if and only if Ilx + ay II ~ Ilx II 
for all scalars a. 

9. Let V be the vector space of all continuous complex-valued functions 

on J = [a, b]. Let Xl = (V, 11·1100), where Ilxlloo = max Ix(t)l; and let 
tEJ 

X 2 = (V, 11·11z), where 

b 

(x, y) = L x(t)y(t) dt. 

Show that the identity mapping x ~ x of Xl onto X2 is continuous. 
(It is not a homeomorphism. X2 is not complete.) 

10. (Zero operator) Let T: X - X be a bounded linear operator on a 
complex inner product space X. If (Tx, x) = 0 for all x E X, show that 
T=O. 

Show that this does not hold in the case of a real inner product 
space. Hint. Consider a rotation of the Euclidean plane. 
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3.3 Orthogonal Complements and Direct Sums 

In a metric space X, the distance 8 from an element x E X to a 
nonempty subset Me X is defined to be 

8 = inf d(x, :9) (M#-0). 
yeM 

In a normed space this becomes 

(1) 8 = inf IIx -:911 (M#-0). 
yeM 

A simple illustrative example is shown in Fig. 26. 
We shall see that it is important to know whether there is ayE M 

such that 

(2) 8=lIx-yll, 

that is, intuitively speaking, a point y E M which is closest to the given 
x, and if such an element exists, whether it is unique. This is an 
existence and uniqueness problem. It is of fundamental importance, 
theoretically as well as in applications, for instance, in connection with 
approximations of functions. 

Figure 27 illustrates that even in a very simple space such as the 
Euclidean plane R2, there may be no y satisfying (2), or precisely one 
such y, or more than one y. And we may expect that other spaces, in 
particular infinite dimensional ones, will be much more complicated in 
that respect. For general normed spaces this is the case (as we shall see 
in Chap. 6), but for Hilbert spaces the situation remains relatively 

Il / 
/ 

/ 
/ 

M 

px 
I 

Fig. 26. Illustration of (1) in the case of tile plane R2 
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,\x yx ~x 

\ I I I' 
\Il 16 rd 61 \6 
\ I 11\ 

M ~ M £. I ,j...M 

(No y) (A unique y) (Infinitely many y's) 

(a) (b) (c) 

Fig. 27. Existence and uniqueness of points y E M satisfying (2), where the given Me R2 

is an open segment [in (a) and (b)] and a circular arc [in (c)] 

simple. This fact is surprising and has various theoretical and practical 
consequences. It is one of the main reasons why the theory of Hilbert 
spaces is simpler than that of general Banach spaces. 

To consider that existence and uniqueness problem for Hilbert 
spaces and to formulate the key theorem (3.3-1, below), we need two 
related concepts, which are of general interest, as follows. 

The segment joining two given elements x and y of a vector space 
X is defined to be the set of all Z E X of the form 

z=exx+(l-ex)y (ex E R, O~ ex ~ 1). 

A subset M of X is said to be convex if for every x, y E M the segment 
joining x and y is contained in M. Figure 28 shows a simple example. 

For instance, every subspace Y of X is convex, and the intersec­
tion of convex sets is a convex set. 

We can now provide the main tool in this section: 

Fig. 28. Illustrative example of a segment in a convex set 
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3.3-1 Theorem (Minimizing vector). Let X be an inner product space 
and M"t 0 a convex subset which is complete (in the metric induced by 
the inner product). Then for every given x E X there exists a unique Y E M 
such that 

(3) l> = inf IIx - yll = Ilx - YII· 
yEM 

Proof. (a) Existence. By the definition of an infimum there is'''a 
sequence (Yn) in M such that c ' 

(4) where 

We show that (Yn) is Cauchy. Writing Yn - X = v", we have IIvnll = l>n and 

Ilvn + vmll = llYn + Ym -2xll =211!(Yn + Ym)-xll~2l> 

because M is convex, so that !(Yn + Ym) EM. Furthermore, we have 
Yn - Ym = Vn - Vm. Hence by the parallelogram equality, 

llYn - Yml12 = Ilvn - vml12 = -llvn + vmI12+2(llvnI12+llvmI12) 
~ _(2l»2 + 2 (l>n2 + l>m2), 

and (4) implies that (Yn) is Cauchy. Since M is complete, (Yn) con­
verges, say, Yn - Y E M. Since Y E M, we have Ilx - YII ~ l>. Also, by 
(4), 

Ilx - YII ~ Ilx - Ynll + llYn - YII = l>n + llYn - YII - 8. 

This shows that Ilx - YII = 8. 
(b) Uniqueness. We assume that Y E M and YoE M both 

satisfy 

Ilx-YII= 8 and Ilx-Yoll = 8 

and show that then Yo = y. By the parallelogram equality, 

IIY - Yol12 = II(y - x) - (Yo- x)112 

= 211Y - xI12+21IYo- xI12-II(Y - x)+ (Yo- x)112 

= 282 + 282 - 2211!(y + Yo) - x112. 
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On the right, ~(y + Yo) E M, so that 

II~(Y + Yo) - xii ~ 8. 

This implies that the right-hand side is less than or equal to 
282+282-482=0. Hence we have the inequality IIY-Yoll~O. Clearly, 
IIY - Yoll ~ 0, so that we must have equality, and Yo = y. I 

Turning from arbitrary convex sets to subspaces, we obtain a 
lemma which generalizes the familiar idea of elementary geometry that 
the unique point Y in a given subspace Y closest to a given x is found 
by "dropping a perpendicular from x to Y." 

3.3-2 Lemma (Orthogonality). In Theorem 3.3-1, let M be a com­
plete subspace Y and x E X fixed. Then z = x - Y is orthogonal to Y. 

Proof. If z.L Y were false, there would be a YI E Y such that 

(5) 

Clearly, }II -F- 0 since otherwise (z, Yl) = O. Furthermore, for any scalar 0:, 

liz - aYll12 = (z - aYI, z - aYI) 

=(z, z)-a(z, YI)-a[(Yb z)-a(Yb YI)] 

=(z, z)-a(3-a[~-a(Yb YI)]. 

The expression in' the brackets [ ... ] is zero if we choose 

- (3 a=---
(Yb YI) . 

From (3) we have Ilzll = Ilx - YII = 8, so that our equation now yields 

Ilz-aYI1l2=llzI12_( 1(31
2 

)<82. 
Yb YI 

But this is impossible because we have 

where 

so- that liz - aYIl1 ~ 8 by the definition of 8. Hence (5) cannot hold, and 
the lemma is proved. I 
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Our goal is a representation of a Hilbert space as a direct sum 
which is particularly simple and suitable because it makes use of 
orthogonality. To understand the situation and the problem, let us first 
introduce the concept of a direct sum. This concept makes sense for 
any vector space and is defined as follows. 

3.3-3 Definition (Direct sum). A vector space X is said to be the 
direct sum of two subs paces Y and Z of X, written 

X= YESZ, 

if each x E X has a unique representation 

x=y+Z YEY,ZEZ. 

Then Z is called an algebraic complement of Y in X and vice versa, 
and Y, Z is called a complementary pair of subspaces in X. • 

For example, Y = R is a subspace of the Euclidean plane R2. 
Clearly, Y has infinitely many algebraic complements in R2, each of 
which is a real line. But most convenient is a complement that is 
perpendicular. We make use of this fact when we choose a Cartesian 
coordinate system. In R3 the situation is the same in principle. 

Similarly, in the case of a general Hilbert space H, the main 
interest concerns representations of H as a direct sum of a closed 
subspace Y and its orthogonal complement 

which is the set of all vectors orthogonal to Y. This gives our main 
result in this section, which is sometimes called the projection theorem, 
for reasons to be explained after the proof. 

3.3-4 Theorem (Direct sum). Let Y be any closed subspace of a 
Hilbert space H. Then 

(6) H=YESZ 

Proof. Since H is' complete and Y is closed, Y is complete by 
Theorem 1.4-7. Since Y is convex, Theorem ~.3-1 and Lemma 3.3-2 
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imply that for every x E H there is ayE Y such that 

(7) x=y+Z 

To prove uniqueness, we assume that 

x = y + Z = Yl + Zt 

where y, Yl E Y and z, Zl E Z. Then y - Yl = Zl - z. Since y - Yl E Y 
whereas Zl - Z E Z = y.L, we see that y - Yl E Y n y-1. = {O}. This implies 
Y = Yl' Hence also Z = Zl' • 

y in (7) is caned the orthogonal projection of x on Y.(or, briefly, 
the projection of x on Y). This term is motivated by elementary 
geometry. [For instance, we can take H = R2 and project any point 
x = «(;1, (;2) on the (;l-axis, which then plays the role of Y; the projec­
tion is y = «(;1, 0).] 

Equation (7) defines a mapping 

P:H~Y 

x~y=Px. 

P is called the (orthogonal) projection (or projection operator) of H 
onto Y. See Fig. 29. Obviously, P is a bounded linear operator. P 

Fig. 29. Notation in connection with Theorem 3.3-4 and formula (9) 
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maps 
H onto Y, 
Y onto itself, 
Z = y.L onto {O}, 

and is idempotent, that is, 

p 2 =p; 

thus, for every x E H, 

p2X = P(Px) = Px. 

Hence ply is the identity operator on Y. And for Z = y.L our discus­
sion yields 

3.3-5 Lemma (Null space). The orthogonal complement y.L of a 
closed subspace Y of a Hilbert space H is the null space ,N'(P) of the 
orthogonal projection P of H onto Y. 

An orthogonal complement is a special annihilator, where, by 
definition, the annihilator M.L of a set M#- 0 in an inner product space 
X is the see 

M.L={x EX I x.LM}. 

Thus, x E M.L if and only if (x, v) = 0 for all v E M. This explains the 
name. 

Note that M.L is a vector space since x, y E M.L implies for all v EM 
and all scalars a, {3 

(ax + (3y, v) = a(x, v) + (3(y, v) = 0, 

hence aX + {3y E M.L. 

(8*) 

M.L is closed, as the reader may prove (Prob. 8). 
(M.L).L is written M H , etc. In general we have 

3 This causes no conflict with Prob. 13, Sec. 2.10, as we shall see later (in Sec. 3.8). 
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because 

xEM ~ 

But for closed subspaces we even have 

3.3-6 Lemma (Closed subspace). If Y is a closed subspace of a 
Hilbert space H, then 

(8) 

Proof. Yc y.Ll. by (8*). We show Y=> y.Ll.. Let x E y.Ll.. Then 
x = y + z by 3.3-4, where y EYe y.Ll. by (8*). Since y.Ll. is a vector 
space and x E y.Ll. by assumption, we also have z = x - Y E y.Ll., hence 
z.L y.L. But z E y.L by 3.3-4. Together z .Lz, hence z = 0, so that x = y, 
that is, x E Y. Since x E y.Ll. was arbitrary, this proves Y=> y.Ll.. I 

(8) is the main reason for the use of closed subspaces in the 
present context. Since Z.L = y.Ll. = Y, formula (6) can also be written 

It follows that x I----? z defines a projection (Fig. 29) 

(9) Pz : H~Z 

of H onto Z, whose properties are quite similar to those of the 
projection P considered before. 

Theorem 3.3-4 readily implies a characterization of sets in Hilbert 
spaces whose span is dense, as follows. 

3.3-7 Lemma (Dense set). For any subset M;6. 0 of a Hilbert space 
H, the span of M is dense in H if and only if M.L = {O}. 

Proof. (a) Let x E M.L and assume V = span M to be dense in H. 
Then x E V = H. By Theorem 1.4-6( a) there is a sequence (xn ) in V 
such that Xn ~ x. Since x E M.L and M.L .L V, we have (xn , x) = O. The 
continuity of the inner product (d. Lemma 3.2-2) implies that 
(xn, x)--+(x, x). Together, (x, x) = IIxll2 = 0, so that x = o. Since 
x E M.L was arbitrary, this shows that M.L = {O}. 
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(b) Conversely, suppose that M.L= {O}. If x.L V, then 
x.L M, so that x E M.L and x = O. Hence V.L = {O}. Noting that V is a 
subspace of H, we thus obtain V = H from 3.3-4 with Y = V. • 

Problems 

1. Let H be a Hilbert space, Me H a convex subset, and (xn) a sequence 
in M such that Ilxnll- d, where d = inf Ilxll. Show that (xn) converges 

xEM 

in H. Give an illustrative example in R2 or R3. 

2. Show that the subset M = {y = ('TIt) I L 'TIj = 1} of complex space en (cf. 
3.1-4) is complete and convex. Find the vector of minimum norm in M. 

3. (a) Show that the vector space X of all real-valued continuous func­
tions on [-1, 1] is the direct sum of the set of all even continuous 
functions and the set of all odd continuous functions on [-1, 1]. 
(b) Give examples of representations of R3 as a direct sum (i) of a 
subspace and its orthogonal complement, (ii) of any complementary 
pair of subspaces. 

4. (a) Show that the conclusion of Theorem 3.3-1 also holds if X is a 
Hilbert space and Me X is a closed subspace. (b) How could we use 
Appolonius' identity (Sec. 3.1, Prob. 5) in the proof of Theorem 3.3-1? 

5. Let X=R2. Find M-'- if M is (a) {x}, where X=(gl,g2)~0, (b) a 
linearly independent set {Xl' X2} c x. 

6. Show that Y = {x I x = (Q) E e, g2n = 0, n E N} is a closed subspace of e 
and find y-'-. What is Y-'- if Y=span{el,·· ., en}c e, where ej = (8jk )? 

7. Let A and B ~ A be nonempty subsets of an inner product space X. 
Show that 

8. Show that the annihilator M-'- of a set M ~ 0 in an inner product space 
X is a closed subspace of X. 

9. Show that a subspace Y of a Hilbert space H is closed in H if and only 
if Y= yll. 

10. If M ~ 0 is any subset of a Hilbert space H, show that Mil is the 
smallest closed subspace of H which contains M, that is, Mil is 
contained in any closed subspace Y c H such that Y ~ M. 
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3.4 Orthonormal Sets and Sequences 

Orthogonality of elements as defined in Sec. 3.1 plays a basic role in 
inner product and Hilbert spaces. A first impression of this fact was 
given in the preceding section. Of particular interest are sets whose 
elements are orthogonal in pairs. To understand this, let us remember 
a familiar situation in'Euclidean space R3. In the space R 3, a set of that 
kind is the set of the three unit vectors in the positive directions of the 
axes of a rectangular coordinate system; call these vectors el, e2, e3. 
These vectors form a basis for R 3, so that every x E R3 has a unique 
representation (Fig. 30) 

Now we see a great advantage of the orthogonality. Given x, we can 
readily determine the unknown coefficients al, a2, a3 by taking inner 
products (dot products). In fact, to obtain al, we must multiply that 
representation of x by el, that is, 

and so on. In more general inner product spaces there are similar and 
other possibilities for the use of orthogonal and orthonormal sets and 
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sequences, as we shall explain. In fact, the application of such sets and 
sequences makes up quite a substantial part of the whole theory of 
inner product and Hilbert spaces. Let us begin our study of this 
situation by introducing the necessary concepts. 

3.4-1 Definition (Orthonormal sets and sequences). An orthogonal 
set M in an inner product space X is a subset Me X whose elements 
are pairwise orthogonal. An orthonormal set Me X is an orthogonal 
set in X whose elements have norm 1, that is, for all x, y EM, 

(1) (x, y)= {~ ifx;iy 

if x = y. 

If an orthogonal or orthonormal set M is countable, we can 
arrange it in a sequence (xn ) and call it an orthogonal or orthonormal 
sequence, respectively. 

More generally, an indexed set, or family, (Xa ), a E I, is called 
orthogonal if xa.l xf3 for all a, ~ E I, a;i~. The family is called 
orthonormal if it is orthogonal and all Xa have norm 1, so that for all 
a, ~ E I we have 

(2) (Xa, Xf3) = 8af3 = {~ if a;i~, 
if a =~. 

Here, 8af3 is the Kronecker delta, as in Sec. 2.9. • 

If the reader needs help with families and related concepts, he 
should look up A1.3 in Appendix 1. He will note that the concepts in 
our present definition are closely related. The reason is that to any 
subset M of X we can always find a family of elements of X such that 
the set of the elements of the family is M. In particular, we may take 
the family defined by the natural injection of M into X, that is, the 
restriction to M of the identity mapping x ~ x on X. 

We shall now consider some simple properties and examples of 
orthogonal and orthonormal sets. 

For orthogonal elements x, y we have (x, y) = 0, so that we readily 
obtain the Pythagorean relation 

(3) 
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Fig. 31. Pythagorean relation (3) in R2 
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Figure 31 shows a familiar example.-More generally, if {Xl. ... ,x..} 
is an orthogonal set, then 

(4) 

In fact, (Xj, Xk)=O if jf:. k; consequently, 

II~ Xjr = (~Xj, ~ Xk)= ~ ~ (Xj, Xk)= ~ (xjo x)= ~ IIxjl12 

(summations from 1 to n). We also note 

3.4-2 Lemma (Linear independence). An orthonormal set is linearly 
independent. 

Proof. Let {el. .. : ,en} be orthonormal and consider the equa­
tion 

Multiplication by a fixed ej gives 

and proves linear independence for any finite orthonormal set. This 
also implies linear independence if the given orthonormal set is in­
finite, by the definition of linear independence in Sec. 2.1. • 

Examples 

3.4-3 Euclidean space R3. In the space R3 , the three unit vectors 
(I, 0, 0), (0, 1,0), (0,0, 1) in the direction of the three axes of a 
rectangular coordinate system form an orthonormal set. See Fig. 30. 
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3.4-4 Space e. In the space 12, an orthonormal sequence is (en), 
where en = (llni) has the nth element 1 and all others zero. (Cf. 3.1-6.) 

3.4-5 Continuous functions. Let X be the inner product space of all 
real-valued continuous functions on [0, 21T] with inner product defined 
by 

121T 

(x, y) = 0 x(t)y(t) dt 

(d. 3.1-5). An orthogonal sequence in X is (Un), where 

un(t) = cos nt n=O, 1,···. 

Another orthogonal sequence in X is (vn ), where 

Vn(t) = sin nt 

In fact, by integration we obtain 

(5) (Urn, un) = rw 
cos mt cos nt dt = { : 

21T 

n= 1,2,···. 

if mf: n 

if m = n = 1, 2,' .. 

ifm=n=O 

and similarly for (vn). Hence an orthonormal sequence is (en), where 

1 
eo(t) = I ' 

V21T 
(n=1,2,' "). 

From (vn) we obtain the orthonormal sequence (en), where 

(n=1,2,"')' 

Note that we even have um..l Vn for all m and n. (Proof?) These 
sequences appear in Fourier series, as we shall discuss in the next 
section. Our examples are sufficient to give us a first impression of 
what is going on. Further orthonormal sequences of practical impor'­
tance are included in a later section (Sec. 3.7). • 
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A great advantage of orthonormal sequences over arbitrary 
linearly iadependent sequences is the following. If we know that a 
given x can be represented as a linear combination of some elements 
of an orthonormal sequence, then the orthonormality makes the actual 
determination of the coefficients very easy. In fact, if (eh e2, ... ) is an 
orthonormal sequence in an inner product space X and we have 
x E span {e1. ... , en}, where n is fixed, then by the definition of the 
span (Sec. 2.1), 

(6) 

and if we take the inner product by a fixed ej> we obtain 

With these coefficients, (6) becomes 

(7) 

This shows that the determination of the unknown coefficients in (6) is 
simple. Another advantage of orthonormality becomes apparent if in 
(6) and (7) we want to add another term £In+len+h to take care of an 

then we need to calculate only one more coefficient since the other 
coefficients remain unchanged. 

More generally, if we consider any x E X, not necessarily in 
Yn = span {el,' .. ,en}, we can define Y E Yn by setting 

(8a) 

where n is fixed, as before, and then define z by setting 

(8b) x = y +z, 
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that is, Z = x - y. We want to show that z.l y. To really understand 
what is going on, note the following. Every y E Y n is a linear combina­
tion 

Here Ilk = (y, ek), as follows from what we discussed right before. Our 
claim is that for the particular choice Ilk = (x, ek), k = 1, ... , n, we 
shall obtain a y such that z = x - y.l y. 

To prove this, we first note that, by the orthonormality, 

(9) 

Using this, we can now show that z.l y: 

(z, y)=(x-y, y)=(x, y)-(y, y) 

= \ x, L (x, ek)ek)-lIyI12 

= L (x, ek)(x, ek) - L I(x, ekW 

=0. 

Hence the Pythagorean relation (3) gives 

(10) IIxl12 = IIYI12+llzI12. 

By (9) it follows that 

(11) 

Since IIzll~O, we have for every n = 1, 2,· .. 

(12*) 

These sums have nonnegative terms, so that they form a monotone 
increasing sequence. This sequence converges because it is bounded by 
Ilx112. This is the sequence of the partial sums of an infinite series, which 
thus converges. Hence (12*) implies 
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3.4-6 Theorem (Bessel inequality). Let (ek) be an orthonormal se­
quence in an inner product space X. Then for every x E X 

00 

(12) L I(x, ekW~llxl12 (Bessel inequality). 
k=l 

The inner products (x, ek) in (12) are called the Fourier coeffi­
cients of x with respect to the orthonormal sequence (ek). 

Note that if X is finite dimensional, then every orthonormal set in 
X must be finite because it is linearly independent by 3.4-2. Hence in 
(12) we then have a finite sum. 

We have seen that orthonormal sequences are very convenient to 
work with. The remaining practical problem is how to obtain an 
orthonormal sequence if an arbitrary linearly independent sequence is 
given. This is accomplished by a constructive procedure, the Gram­
Schmidt process for orthonormalizing a linearly independent sequence 
(Xi) in an inner product space. The resulting orthonormal sequence (ei) 
has the property that for every n, 

The process is as follows. 

1st step. The first element of (ek) is 

2nd step. X2 can be written 

Then (Fig. 32) 

is not the zero vector since (Xi) is lineaI'ly independent; also v2.l el 
since (V2, el) = 0, so that we can take 
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- <X:z, e1 > e1 

e1 

Fig. 32. Gram-Schmidt process, 2nd step Fig. 33. Gram-Schmidt process, nth step 

3rd step. The vector 

is not the zero vector, and V3.l el as well as V3.l e2. We take 

(13) 

nth step. The vector (see Fig. 33) 

n-I 

Vn = xn - L (xno ek)ek 
k-I 

is not the zero vector and is orthogonal to et, ... , en-I. From it we 
obtain 

(14) 

These are the general formulas for the Gram-Schmidt process, 
which was designed by E. Schmidt (1907). Cf. also J. P. Gram (1883). 
Note that the sum which is subtracted on the right-hand side of (13) is 
the projection of Xn on span {el. ... ,en-I}. In other words, in each 
step we subtract from Xn its "components" in the directions of the 
previously orthogonalized vectors. This gives Vn , which is then multi~ 
plied by 1I11VnII. so that we get a vector of norm one. Vn cannot be the 
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zero vector for any n. In fact, if n were the smallest subscript for which 
Vn = 0, then (13) shows that Xn would be a linear combination of 
el, ... , en-l, hence a linear combination of x!, ... , Xn-l, contradicting 
the assumption that {Xl. ... , Xn} is linearly independent. 

Problems 

1. Show that an inner product space of finite dimension n has a basis 
{b lo ' •• ,bn } of orthonormal vectors. (The infinite dimensional case 
will be considered in Sec. 3.6.) 

2. How can we interpret (12*) geometrically in R', where r~ n? 

3. Obtain the Schwarz inequality (Sec. 3.2) from (12*). 

4. Give an example of an x E e such that we have strict inequality in (12). 

5. If (ek) is an orthonormal sequence in an inner product space X, and 
x E X, show that x - y with y given by 

is orthogonal to the subspace Yn = span {elo ... en}. 

6. (Minimum property of Fourier coefficients) Let {elo"', en} be an 
orthonormal set in an inner product space X, where n is fixed. Let 
x E X be any fixed element and y = ~lel + ... + ~nen' Then IIx - yll 
depends on ~lo"', ~n' Show by direct calculation that Ilx - yll is 
minimum if and only if ~j = (x, e), where j = 1, ... , n. 

7. Let (ek) be any orthonormal sequence in an inner product space X. 
Show that for any x, y E X, 

= 

L I(x, ek)(y, ek)l;;a Ilxllllyll. 
k=l 

8. Show that an element x of an inner product space X cannot have "too 
many" Fourier coefficients (x, ek) which are "big"; here, (ek) is a given 
orthonormal sequence; more precisely, show that the number n". of 
(x, ek) such that I(x, ek)1 > 11m must satisfy n". < m2 11x112 • 



160 Inner Product Spaces. Hilbert Spaces 

9. Orthonormalize the first three terms of the sequence (xo, Xl, X2, ... ), 
where xi(t) = ti, on the interval [-1,1], where 

(X, y) = r x(t)y(t) dt. 

10. Let Xl(t) = t2, X2(t) = t and x3(t) = 1. Orthonormalize Xl> X2, X3, in this 
order, on the interval [-1, 1] with respect to the inner product given in 
Prob. 9. Compare with Prob. 9 and comment. 

3.5 Series Related to Orthonormal Sequences 
and Sets 

There are some facts and questions that arise in connection with the 
Bessel inequality. In this section we first motivate the term "Fourier 
coefficients," then consider infinite series related to orthonormal se­
quences, and finally take a first look at orthonormal sets which are 
uncountable. 

3.5-1 Example (Fourier series). A trigonometric series is a series of 
the form 

(1 *) 
00 

ao + L (ak cos kt + bk sin kt). 
k=l 

A real-valued function x on R is said to be periodic if there is a 
positive number p (called a period of x) such that x(t+ p) = x(t) for all 
tER. 

Let x be of period 27T and continuous. By definition, the Fourier 
series of x is the trigonometric series (1*) with coefficients ak and bk 
given by the Euler formulas 

1 f2 ... 
ao = 27T 0 x(t) dt 

(2) 
1 f2 ... 

ak=- x(t)cosktdt 
7T 0 

k=1, 2,···, 

1 f2 ... 
bk = - x(t) sin kt dt 

7T 0 
k= 1, 2,···. 

These coefficients are called the Fourier coefficients of x. 
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If the Fourier series of x converges for each t and has the sum 
x(t), then we write 

(1) 
00 

x(t) = ao + L (ak cos kt + bk sin kt). 
k=l 

Since x is periodic of period 2'lT, in (2) we may replace the interval 
of integration [0,2'lT] by any other interval of length 2'lT, for instance 
[ - 'IT, 'IT]. 

Fourier series first arose in connection with physical problems 
considered by D. Bernoulli (vibrating string, 1753) and J. Fourier (heat 
conduction, 1822). These series help to represent complicated periodic 
phenomena in terms of simple periodic functions (cosine and sine). 
They have various physical applications in connection with differential 
equations (vibrations, heat conduction, potential problems, etc.). 

From (2) we see that the determination of Fourier coefficients 
requires integration. To help those readers who have not seen Fourier 
series before, we consider as an illustration (see Fig. 34) 

X(t)={ t 
'IT - t 

if - 'IT/2 ~ t < 'IT/2 

if 'IT/2 ~ t < 3 'IT/2 

and x(t+2'lT) = x(t). From (2) we obtain ak = ° for k = 0,1, ... and, 
chopsing [-'IT/2, 3'lT/2] as a convenient interval of integration and 
integrating by parts, 

1 1 w/2 1 i 3w/2 
bk=- tsinktdt+- ('IT-t)sinktdt 

'IT -w/2 'IT w/2 

1 IW/2 1 1W/2 

= --k [t cos kt] +-k cos ktdt 
'IT -w/2 'IT -w/2 

1 13W/2 1 i 3w/2 
--[('IT-t)coskt] -- cosktdt 

'lTk JIT/2 'lTk w/2 

4 . k'lT 
= 'lTk 2 SIn 2 ' k= 1,2,···. 
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Fig. 34. Graph of the periodic function x, of period 211", given by x(t) = t 
if t E [ -11"/2, 11"/2) and x(t) = 11" - tift E [11"/2,311"/2) 

Hence (1) takes the form 

() 4(. 1. 1. 5 ) x t =- smt--sm3t+-sm t-+··· 
7T 32 52 • 

The reader may graph the first three partial sums and compare them 
with the graph of x in Fig. 34. 

Returning to general Fourier series, we may ask how these series 
fit into our terminology and formalism introduced in the preceding 
section. Obviously, the cosine and sine functions in (1) are those of the 
sequences (Uk) and (Vk) in 3.4-5, that is 

udt) = cos kt, vdt) = sin kt. 

Hence we may write (1) in the form 

00 

(3) x(t) = aouo(t) + L [akuk(t) + bkvdt)]. 
k=l 

We multiply (3) by a fixed Uj and integrate over t from 0 to 27T. This 
means that we take the inner product by Uj as defined in 3.4-5. We 
assume that term wise integration is permissible (uniform convergence 
would suffice) and use the orthogonality of (Uk) and (Vk) as well as the 
fact that Uj .L Vk for all j, k. Then we obtain 

(x, Uj) = ao(uo, Uj) + L [ak(uk, Uj) + bk(vk, Uj)] 

if j= 0 

if j = 1,2, ... , 
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cf. (5), Sec. 3.4. Similarly, if we multiply (3) by Vj and proceed as 
before, we arrive at 

where j = 1, 2, .... Solving for aj and bj and using the orthonormal 
sequences (ej) and (ej), where ej = II Uj 11-1 Uj and ej = IIvjll-1vjo we obtain 

(4) 

1 1 
aj = IIujl12 (x, Uj) = Ilujll (x, ej), 

bj = Ilv~112 (x, Vj) = lI~jll (x, ej). 

This is identical with (2). It shows that in (3), 

and similarly for bkvdt). Hence we may write the Fourier series (1) in 
the form 

(5) 
00 

x = (x, eo)eo + L [(x, ek)ek + (x, ek)·ek]. 
k=l 

This justifies the term "Fourier coefficients" in the preceding section. 
Concluding this example, we mention that the reader can find an 

introduction to Fourier series in W. Rogosinski (1959); cf. also R. V. 
Churchill (1963), pp. 77-112 and E. Kreyszig (1972), pp. 377-407. I 

, 
Our example concerns infinite series and raises the question how 

we can extend the consideration to other orthonormal sequences and 
what we can say about the convergence of corresponding series. 

Given any orthonormal sequence (ek) in a Hilbert space H, we 
may consider series of the form 

(6) 

where 0: 1, 0:2, ..• are any scalars. As defined in Sec. 2.3, such a series 
converges and has the sum s if there exists an s E H such that the 
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sequence (sn) of the partial sums 

converges to s, that is, Iisn - sll ~ 0 as n ~ 00. 

3.5-2 Theorem (Convergence). Let (ek) be an orthonormal se­
quence in a Hilbert space H. Then: 

(7) 

(8) 

(a) The series (6) converges (in the norm on H) if and only if the 
following series converges: 

(b) If (6) converges, then the coefficients ak are the Fourier 
coefficients (x, ek), where x denotes the sum of (6); hence in this 
case, (6) can be written 

00 

x = L (x, ek)ek. 
k=l 

(c) For any x E H, the series (6) with ak = (x, ek) converges (in the 
norm of H). 

Proof. (a) Let 

and 

Then, because of the orthonormality, for any m and n> m, 

Iisn - sml12 = Ilam+1em+l + ... + anenl12 

= lam +112 + ... + Ian 12 = Un - U m • 

Hence (sn) is Cauchy in H if and only if (un) is Cauchy in R. Since H 
and R are complete, the first statement of the theorem follows. 

(b) Taking the inner product of Sn and ej and using the 
orthonormality, we have 

(k ~ n and fixed). 
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By assumption, Sn ~ x. Since the inner product is continuous (cf. 
Lemma 3.2-2), 

(j~ k). 

Here we can take k (~n) as large as we please because n ~ 00, so 
that we have aj = (x, ej) for every j = 1,2, .... 

(c) From the Bessel inequality in Theorem 3.4-6 we see 
that the series 

converges. From this and (a) we conclude that (c) must hold. • 

If an orthonormal family (eK ), K E I, in an inner product space X 
is uncountable (since the index set I is uncountable), we can still form 
the Fourier coefficients (x, eK ) of an x E X, where K E 1. Now we use 
(12*), Sec. 3.4, to conclude that for each fixed m = 1, 2, . .. the 
number of Fourier coefficients such that I(x; eK)1 > 11m must be finite. 
This proves the remarkable 

3.5-3 Lemma (Fourier coefficients). Any x in an inner product space 
X can have at most countably many nonzero Fourier coefficients (x, eK ) 

with respect to an orthonormal family (eK ), K E I, in X. 

Hence with any fixed x E H we can associate a series similar to (8), 

" ' 
(9) 

and we can arrange the eK with (x, eK ) ~ 0 in a sequence (el, e2, ... ), so 
that (9) takes the form (8). Convergence follows from Theorem 3.5-2. 
We show that the sum does not depend on the order in which those eK 

are arranged in a sequence. 

Proof. Let (wm ) be a rearrangement of (en). By definition this 
means that there is a bijective mapping n ~ m(n) of N onto itself 
such that corresponding terms of the two sequences are equal, that is, 
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Wm(n) = en· We set 

and 

Then by Theorem 3.5-2(b), 

Since en = wm(n), we thus obtain 

and similarly (Xl - X2, wm ) = O. This implies 

Consequently, Xl - X2 = 0 and Xl = X2. Since the rearrangement (wm ) of 
(en) was arbitrary, this completes the proof. I 

Problems 

1. If (6) converges with sum x, show that (7) has the sum Ilx112. 

2. Derive from (1) and (2) a Fourier series representation of a function x 
(function of 'T) of arbitrary period p. 

3. Illustrate with an example that a convergent series L (x, ek)ek need not 
have the sum x. 

4. If (xJ ) is a sequence in an inner product space X such that the series 
Ilxlll + IIx211 + ... converges, show that (sn) is a Cauchy sequence, where 
Sn = Xl + ... + xn• 
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5. Show that in a Hilbert space H, convergence of L Ilxjll implies con­
vergence of L Xj. 

6. Let (ej) be an orthonormal sequence in a Hilbert space H. Show that if 

= = 

y = L f3j ej , 
j=l 

then (x, y) = L aiij , 

j=l 

the series being absolutely convergent. 

7. Let (e,J be an orthonormal sequence in a Hilbert space H. Show that 
for every x E H, the vector 

exists in H and x - y is orthogonal to every ek. 

8. Let (ek) be an orthonormal sequence in a Hilbert space H, and let 
M = span-(ed. Show that for any x E H we have x EM if and only if x 
can be represented by (6) with coefficients ak = (x, ek). 

9. Let (en) and (en) be orthonormal sequences in a Hilbert space H, and 
let Ml = span (en) and M2 = span (en). Using Prob. 8, show that 
M! = M2 if and only if 

(a) 
= 

en = L Ctnmem , 

m=l 

(b) 
= 

en = L amnem , 

m=t 

10. Work out the details of the proof of Lemma 3.5-3. 

3.6 Total Orthonormal Sets and Sequences 

The truly interesting orthonormal sets in inner product spaces and 
Hilbert spaces are those which consist of "sufficiently many" elements 
so that every element in space can be represented or sufficiently 
accurately approximated by the use of those orthonormal sets. In finite 
dimensional (n-dimensional) spaces the situation is simple; all we need 
is an orthonormal set of n elements. The question is what can be done 
to take care of infinite dimensional spaces, too. Relevant concepts are 
as follows. 
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3.6-1 Definition (Total orthonormal set). A total set (or fundamental 
set) in a normed space X is a subset Me X whose span is dense in X 
(cf. 1.3-5). Accordingly, an orthonormal set (or sequence or family) in 
an inner product space X which is total in X is called a total 
orthonormal set4 (or sequence or family, respectively) in X. I 

M is total in X if and only if 

spanM=X. 

This is obvious from the definition. 
A total orthonormal family in X is sometimes called an orthonor­

mal basis for X. However, it is important to note that this is not a 
basis, in the sense of algebra, for X as a vector space, unless X is finite 
dimensional. 

In every Hilbert space H -:I- {O} there exists a total orthonormal set. 

For a finite dimensional H this is clear. For an infinite dimensional 
separable H (d. 1.3-5) it follows from the Gram-Schmidt process by 
(ordinary) induction. For a nonseparable H a (nonconstructive) proof 
results from Zorn's lemma, as we shall see in Sec. 4.1 where we 
introduce and explain the lemma for another purpose. 

All total orthonormal sets in a given Hilbert space H -:I- {O} have the 
same cardinality. The latter is called the Hilbert dimension or or­
thogonal dimension of H. (If H = {O}, this dimension is defined to be 0.) 

For a finite dimensional H the statement is clear since then the 
Hilbert dimension is the dimension in the sense of algebra. For an 
infinite dimensional separable H the statement will readily follow from 
Theorem 3.6-4 (below) and for a general H the proof would require 
somewhat more advanced tools from set theory; cf. E. Hewitt and K. 
Stromberg (1969), p. 246. 

4 Sometimes a complete orthonormal set, but we use "complete" only in the sense of 
Def. 1.4-3; this is preferable since we then avoid the use of the same word in connection 
with two entirely different concepts. [Moreover, some authors mean by "completeness" 
of an orthonormal set M the property expressed by (1) in Theorem 3.6-2. We do not 
adopt this terminology either.] 
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The following theorem shows that a total orthonormal set cannot 
be augmented to a more extensive orthonormal set by the adjunction 
of new elements. 

3.6-2 Theorem (Totality). Let M be a subset of an inner product space 
X. Then: 

(1) 

(a) If M is total in X, then there does not exist a nonzero x E X 
which is orthogonal to every element of M; briefly, 

x1.M x=O. 

(b) If X is complete, that condition is also sufficient for the totality 
of M in X. 

Proof. (a) Let H be the completion of X; cf. 3.2-3. Then X, 
regarded as a subspace of H, is dense in H. By assumption, M is total 
in X, so that span M is dense in X, hence dense in H. Lemma 3.3-7 
now implies that the orthogonal complement of M in H is {O}. A 
fortiori, if x E X and x 1. M, then x = O. 

(b) If X is a Hilbert space and M satisfies that condition, 
so that M.L = {O}, then Lemma 3.3-7 implies that M is total in X. I 

The completeness of X in (b) is essential. If X is not complete, 
there may not exist an orthonormal set Me X such that M is total in 
X. An example was given by J. Dixmier (1953). Cf. also N. Bourbaki 
(1955), p. 155. 

Another important criterion for totality can be obtained from the 
Bessel inequality (cf. 3.4-6). For this purpose we consider any given 
orthonormal set M in a Hilbert<,space H. From Lemma 3.5-3 we know 
that each fixed x E H has at most countably many nonzero Fourier 
coefficients, so that we can arrange these coefficients in a sequence, 
r.ay, (x, el), (x, e2), .... The Bessel inequality is (cf. 3.4-6) 

(2) (Bessel inequality) 

where the left-hand side is an infinite series or a finite sum. With the 
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equality sign this becomes 

(3) (Parseval relation) 

and yields another criterion for totality: 

3.6-3 Theorem (Totality). An orthonormal set M in a Hilbert space H 
is total in H if and only if for all x E H the Parseval relation (3) holds 
(summation over all nonzero Fourier coefficients of x with respect to M). 

Proof. (a) If M is not total, by Theorem 3.6-2 there is a nonzero 
x .i M in H. Since x .i M, in (3) we have (x, ek) = 0 for all k, so that 
the left-hand side in (3) is zero, whereas IIxl12 -F- O. This shows that (3) 
does not hold. Hence if (3) holds for all x E H, then M must be total 
in H. 

(b) Conversely, assume M to be total in H. Consider any 
x E H and its nonzero Fourier coefficients (cf. 3.5-3) arranged in a 
sequence (x, el), (x, e2), ... , or written in some definite order if there 
are only finitely many of them. We now define y by 

(4) 

noting that in the case of an infinite series, convergence follows from 
Theorem 3.5-2. Let us show that x - y .i M. For every ej occurring 
in (4) we have, using the orthonormality, 

And for every v EM not contained in (4) we have (x, v) = 0, so that 

(x - y, v)=(x, v)- L (x, ek)(ek, v)= 0-0= O. 
k 

Hence x - y .i M, that is, x - Y E ML. Since M is total in H, we have 
ML={O} from 3.3-7. Together, x-y=O, that is, x=y. Using (4) aQd 



3.6 Total Orthonormal Sets and Sequences 171 

again the orthonormality, we thus obtain (3) from 

This completes the proof. I 

Let us turn to Hilbert spaces which are separable. By Def. 1.3-5 
such a space has a countable subset which is dense in the space. 
Separable Hilbert spaces are simpler than nonseparable ones since 
they cannot contain uncountable orthonormal sets: 

3.6-4 Theorem (Separable HUbert. spaces). Let H be a Hilbert space. 
Then: 

(a) If H is separable, every orthonormal set in H is countable. 

(b) If H contains an orthonormal sequence which is total in H, then 
H is separable. 

Proof. (a) Let H be separable, B any dense set in Hand Many 
orthonormal set. Then any two distinct elements x and y of M have 
distance .J2 since 

Ilx - Yl12 = (x - y, x - y) == (x, x)+(y, y) = 2. 

Hence spherical neighborhoods N" of x and Ny of y of radius h/3 are 
disjoint. Since B is dense in H, there is abE Bin N" and a fj E B in Ny 
and b'fi fj since N" n Ny = 0. Hence if M were uncountable, we would 
have uncountably many such pairwise disjoint spherical neighborhoods 
(for each x E M one of them), so that B would be uncountable. Since B 
was any dense set, this means that H would not contain a dense set 
which is countable, contradicting ~eparability. From this we conclude 
that M must be' countable. 

(b) Let (ek) be a total orthonormal sequence in H and A 
the set of all linear combinations 

n= 1,2,'" 

where 'Y~n) = a~n) + ib~n) and a~n) and b~n) are rational (and Mn) = 0 if .H 
is real). Clearly, A is countable. We prove that A is dense in H by 
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showing that for every x E Hand e > 0 there is a v E A such that 
Ilx-vll<e. 

Since the sequence (ek) is total in H, there is an n such that 
Y n = span {el, ... , en} contains a point whose distance from x is less 
than el2. In particular, Ilx - yll < el2 for the orthogonal projection y of 
x on Yn, which is given by [d. (8), Sec. 3.4] 

Hence we have 

Since the rationals are dense on R, for each (x, ek) there is a 'Ykn) 
(with rational real and imaginary parts) such that 

Hence v E A defined by 

satisfies 

Ilx-vll=llx-L 'Ykn)ekll 

~ Ilx - L (x, ek)ekll + IlL (x, ek)ek - L 'Y\:') ekll 
e e 

<-+-=e. 
2 2 

This proves that A is dense in H, and since A is countable, H is 
separable. • 

For using Hilbert spaces in applications one must know what total 
orthonormal set or sets to choose in a specific situation and how to 
investigate properties of the elements of such sets. For certain function 
spaces this problem will be considered in the next section, Which 
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includes special functions of practical interest that arise in this context 
and have been investigated in very great detail. To conclude this 
section, let us point out that Ol1r pres.ent discussion has some further 
consequences which are of basic importance and can be formulated in 
terms of isomorphisms of Hilbert spaces. For this purpose we first 
remember from Sec. 3.2 the following. 

An isomorphism of a Hilbert space H onto a Hilbert space fl over 
the same field is a bijective linear operator T: H ~ fl such that for 
all x, YEH, 

(5) (Tx, Ty) = (x, y). 

Hand fl are then called isomorphic Hilbert spaces. Since T is linear, it 
preserves the vector space structure, and (5) shows that T is isometric. 
From this and the bijectivity of T it follows that Hand fl are 
algebraically as well as metrically indistinguishable; they are essentially 
the same, except for the nature of their ~lements, so that we may think 
of fl as being essentially H with a "tag" T attached to each vector x. 
Or we may regard Hand fl as two copies (models) of the same 
abstract space, just as we often do in the case of n-dimensional 
Euclidean space. 

Most exciting in this discussion is the fact that for each Hilbert 
dimension (d. at the beginning of this section) there is just one abstract 
real Hilbert space and just one abstract complex Hilbert space. In other 
words, two abstract Hilbert spaces over the same field are distinguished 
only by their Hilbert dimension, a situation which generalizes that in the 
case of Euclidean spaces. This is the meaning of the following theorem. 

3.6-5 Theorem (Isomorphism and Hilbert dimension). Two Hilbert 
spaces Hand fl, both real or both complex, are isomorphic if and only if 
they have the same Hilbert dimension. 

Proof. (a) If H is isomorphic with fr and T: H ~ fl is an 
isomorphism, then (5) shows that orth~n~rmal elements in H have 
orthonormal images under T. Since T is bijective, we thus conclude 
that T maps every total orthonormal set in H onto a total orthonormal 
set in fl. Hence Hand fl have the same Hilbert dImension. 

(b) Conversely, suppose that Hand fl have the same 
Hilbert dimension. The case H={O} and fl={O} is trivial. Let H~{O}. 
Then fl ~ {O}, and any total orthonormal sets Min Hand M in fl have 
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the same cardinality, so that we can index them by the same index set 
{k} and write M = (ek) and M = (ek). 

To show that Hand fl are isomorphic, we construct an isomor­
phism of H onto fl. For every x E H we have 

(6) 

where the right-hand side is a finite sum or an infinite series (d. 3.5-3), 
and L I(x, ekW < 00 by the Bessel inequality. Defining 

k 

(7) 

we thus have convergence by 3.5-2, so that x E fl. The operator T is 
linear since the inner product is linear with respect to the first factor. 
T is isometric, because by first using (7) and then (6) we obtain 

IIxl12 = II Txl12 = L I(x, ekW = Ilx112 • 
k 

From this and (9), (10) in Sec. 3.1 we see that T preserves the inner 
product. Furthermore, isometry implies injectivity. In fact, if Tx = Ty, 
then 

Ilx - yll = IIT(x - y)ll = IITx - Tyll = 0, 

so that x = y and T is injective by 2.6-10. 
We finally show that T is surjective. Given any 

in fl, we have L lakl2 <00 by the Bessel inequality. Hence 

is a finite sum or a series which converges to an x E H by 3.5-2, and 
ak = (x, ek) by the same theorem. We thus have x = Tx by (7). Since 
x E fl was arbitrary, this shows that T is surjective., I 



3.7 Legendre, Hermite and Laguerre Polynomials 175 

Problems 

1. If F is an orthonormal basis in an inner product space X, can we 
represent every x E X as a linear combination of elements of F? (By 
definition, a linear combination consists of finitely many terms.) 

2. Show that if the orthogonal dimension of a Hilbert space H is finite, it 
equals the dimension of H regarded as a vector space; conversely, if 
the latter is finite, show that so is the former. 

3. From what theorem of elementary geometry does (3) follow in the case 
of Euclidean n-space? 

4. Derive from (3) the following formula (which is often called the 
Parseval relation). 

(x, y) = L (x, ek)(Y, ek). 
k 

s. Show that an orthonormal family (e.), K E I, in a Hilbert space H is 
total if and only if the relation in Prob. 4 holds for every x and Y in H. 

6. Let H 'be a separable Hilbert space and M a countable dense subset of 
H. Show that H contains a total orthonormal sequence which can be 
obtained from M by. the Gram-Schmidt process. 

7. Show that if a Hilbert space H is separable, the existence of a total 
orthonormal set in H can be proved without the use of Zorn's lemma. 

8. Show that for any orthonormal sequence F in a separable Hilbert space 
H there is a total orthonormal sequence P which contains F. 

9. Let M be a total set in an inner product space X. If (v, x) = (w, x) for 
all x E M, show that v = w. 

'10. Let M be a subset of a Hilbert space H, and let v, w E H. Suppose that 
(v, x) = (w, x) for all x E M implies v = w. If this holds for all v, wE H, 
show that M is total in H. 

3.7 Legendre, Hermite and Laguerre Polynomials 

The theory of Hilbert spaces has applications to various solid topics in 
analysis. In the present section we discuss some total orthogonal and 
orthonormal sequences which are used quite frequently in connection 
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with practical problems (for instance, in quantum mechanics, as we 
shall see in Chap. 11). Properties of these sequences have been 
investigated in great detail. A standard reference is A. Erd6lyi et al. 
(1953-55) listed in Appendix 3. 

The present section is optional. 

3.7-1 Legendre polynomials. The inner product space X of all con­
tinuous real-valued functions on [-1,1] with inner product defined by 

(x, y)= fl x(t)y(t) dt 

can be completed according to Theorem 3.2-3. This gives a Hilbert 
space which is denoted by L 2[-1,1]; cf. also Example 3.1-5. 

We want to obtain a total orthonormal sequence in L 2[ -1, 1] which 
consists of functions that are easy to handle. Polynomials are of this 
type, and we shall succeed by a very simple idea. We start from the 
powers xo, Xl, X2, ••• where 

(1) xo(t) = 1, tE[-I,I]. 

This sequence is linearly independent. (Proof?) Applying the Gram­
Schmidt process (Sec. 3.4), we obtain an orthonormal sequence (en). 
Each en is a polynomial since in the process we take linear combina­
tions of the Xj's. The degree of en is n, as we shall see. 

Proof. By Theorem 3.2-3 the set W = A(X) is dense in 
e[-I, 1]. Hence for any fixed xEe[-I, 1] and given 8>0 there is a 
continuous function y defined on [-1, 1] such that 

8 
Ilx-yll<-2' 

For this y there is a polynomial z such that for all t E [-1, 1], 

8 
Iy(t) - z(t)1 < r= . 

2v2 
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This follows from the Weierstrass approximation theorem to be proved 
in Sec. 4.11 and implies 

lIy_zI12=r l 
ly(t}-Z(tWdt<2( 8r;::)2=82. Lt 2v2 4 

Together, by the triangle inequality, 

Ilx- zll~llx - yll+lly - zll< 8. 

The definition of the Gram-Schmidt process shows that, by (I), we 
have z E span {eo, ... , em} for sufficiently large m. Since x E L 2[ -1, 1] 
and 8 >0 were arbitrary, this proves totality of (en). I 

For practical purposes one needs explicit formulas. We claim that 

(2a) n=O, 1,··· 

where 

(2b) 

Pn is called the Legendre polynomial of order n. Formula (2b) is called 
Rodrigues' formula. The square root in (2a) has the effect that 
Pn (l} = 1, a property which we shall not prove since we do not need it. 

By applying the binomial theorem to (t2 -1)" and differentiating 
the result n times term by term we obtain from (2b) 

(2c) () ~ (}i (2n-2j)! n-2i 
Pn t ="t... -1 2n., ( _ .)' ( -2")' t 

)=0 J. n J. n J. 

where N = nl2 if n is even and N = (n -1}/2 if n is odd. Hence (Fig. 
35) 

Po(t)= 1 Pl(t} = t 

(2*) P2(t} = t(3t2 -1} P3(t} = t(5 t3 - 3 t} 

P4 (t} =i(35t4 - 30t2 + 3} Ps(t} = i(63tS -70t3 + 1St} 

etc. 
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Fig. 35. Legendre polynomials 

Proof of (2a) and (2b). In part (a) we show that (2b) implies 

(3) [r1 ]1/2 ~ 
IIPnll= L1 p/(t) dt = 'Jz;;+i 

so that en in (2a) comes out with the correct norm, which is 1. In part 
(b) we prove that (Pn) is an orthogonal sequence in the space 
L 2[ -1, 1]. This suffices to establish (2a) and (2b) for the following 
reason. We denote the right-hand side of (2a) at first by Yn(t). Then Yn 
is a polynomial of degree n, and those parts (a) and (b) imply that (Yn) 
is an orthonormal sequence in L 2[ -1, 1]. Let 

Yn = span {eo, ... , en} = span {xo, ... , xn} = span {Yo, ... , Yn}; 

here the second equality sign follows from the algorithm of the 
Gram-Schmidt process and the last equality sign from dim Y n = n + 1 
together with the linear independence of {Yo, ... , Yn} stated in 3.4-2. 
Hence Yn has a representation 

(4) 

Now by the orthogonality, 

Yn 1. Yn-1 = span {Yo, ... , Yn-1} = span {eo, ... , en-I}. 
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This implies that for k = 0, ... , n - 1 we have 

n 

0= (Yn> ek) = L aj(ej, ek) = ak· 
j~O 

179 

Hence (4) reduces to Yn=anen. Here lanl=l since IIYnll=llenll=1. 
Actually, an = + 1 or -1 since both Yn and en are real. Now Yn (t) > 0 
for sufficiently large t since the coefficient of t n in (2c) is positive. Also 
en(t) > 0 for sufficiently large t, as can be seen from xn(t) = tn and (13) 
and (14) in Sec. 3.4. Hence a = + 1 and Yn = en> which establishes (2a) 
with Pn given by (2b). 

This altogether shows that after the presentation of the aforemen­
tioned parts (a) and (b) the proof will be complete. 

(a) We derive (3) from (2b). We write u = t2 -1. The 
function un and its derivatives (un)" ... , (u")(n-l) are zero at t = ± 1, 
and (u")(2n) = (2n)l. Integrating n times by parts, we thus obtain from (2b) 

(2"n!)21IP"112 = f1 (un)(n)(un)(n) dt 

= (u")(n-1)(u")(") [1 -f1 (u n)("-1)(u")(n+1) dt 

=(-1)"(2n)!L: u"dt 

= 2(2n)! r (1- t2)" dt 

1",/2 

= 2(2n)! 0 COS2n+ 1 T dT 

22n+1(n!)2 

2n+1 

Division by (2"n!)2 yields (3). 

(t=sinT) 

(b) We show that (Pm, p") = 0 where O~ m < n. Since Pm 
is a polynomial, it suffices to prove that (xm , Pn ) = 0 for m < n, where 
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Xm is defined by (1). This result is obtained by m integrations by parts: 

2nn! (xm , Pn)= f1 tm(un)(n) dt 

= tm (U n)(n-1) 11 - m J 1 tm -\Un)(n-1) dt 
-1 -1 

= (-l)mm! fl (Un)(n-m) dt 

= (-l)mm! (U n)(n-m-1) 11 = O. 
-1 

This completes the proof of (2a) and (2b). • 

The Legendre polynomials are solutions of the important 
Legendre differential equation 

(5) 

and (2c) can also be obtained by applying the power series method to 
(5). 

Furthermore, a total orthonormal sequence in the space L2[a, b] is 
(qn), where 

(6) 
t-b 

s=1+2--. 
b-a 

The proof follows if we note that a ~ t ~ b corresponds to -1 ~ s ~ 1 
and the orthogonality is preserved under this linear transformation 
t~s. 

We thus have a total orthonormal sequence in L 2[a, b] for any 
compact interval.[a, b]. Theorem 3.6-4 thus implies: 

The real space L 2[a, b] is separable. 

3.7-2 Hermite polynomials. Further spaces of practical interest are 
L 2(_00, +00), L2[a, +00) and L 2(-00, b]. These are not taken care of by 
3.7-1. Since the intervals of integration are ip.finite, the powers 
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xo, Xl.· •• in 3.7-1 alone would not help. But if we multiply each of 
them by a simple function which decreases sufficiently rapidly, we can 
hope to obtain integrals which are finite. Exponential functions with a 
suitable exponent seem to be a natural choice. 

We consider the real.space L 2( -00, +(0). The inner product is given 
by 

(x, y) = [:00 x(t)y(t) dt. 

We apply the Gram-Schmidt process to the sequence of functions 
defined by 

tw(t), 

The factor 1/2 in the ~xponent is purely conventional and has no 
deeper meaning. These functions are elements of L\-oo, +(0). In fact, 
they are bounded on R, say, Itnw(t)l~ kn for all t; thus, 

The Gram-Schmidt process gives the orthonormal sequence (en), 
where (Fig. 36) 

(7a) ( ) _ 1 -,'/2 H ( ) en t - ~1/2 e n t 
(2 nn! "7T) 

Mg. 36. Functions en in (7a) involving Hermite polynomials 
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and 

(7b) Ho(t) = 1, n=I,2,'" . 

Hn is called the Hermite polynomial of order n. 
Performing the differentiations indicated in (7b), we obtain 

(7,c) 
N 2n-2i 

H ( ) ,,", ( l)i n-2j 
n t =n .. ~ - "( -2')' t 

J~O J, n J. 

where N = n/2 if n is even and N = (n -1)/2 if n is odd. Note that this 
can also be written 

(7c') 
N (-I)j ~ 

Hn(t) = L -'-I n(n -1)' .. (n - 2j + 1)(2tr-2J• 

j~O J. 

Explicit expressions for the first few Hermite polynomials are 

(7*) 

(8) 

Ho(t) = 1 

H 2(t) = 4t2 - 2 

H 4 (t) = 16t4 - 48t2 + 12 

H 1(t) = 2t 

H 3(t)=8t 3 -12t 

H 5(t) = 32t5 -160t3 + 120t, 

The sequence (en) defined by (7a) and (7b) is orthonormal. 

Proof. (7a) and (7b) show that we must prove 

if m~ n 

if m = n. 

Differentiating (7c'), we obtain for n ~ 1 

Hn '(t) = 2n ~, (-.~)j (n -1)(n - 2) ... (n - 2j)(2tr-1- 2j 
j~O J. 

where M = (n - 2)/2 if n is even and M = (n -1)/2 if n is odd. We 
apply this formula to H m , assume m ~ n, denote the exponentiaf 
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function in (8) by v; for simplicity, and integrate m times by parts. 
Then, by (7b), 

r+oo 
= -2m Loo Hm_J(t)v(n-l) dt 

Here Ho(t) = 1. If m < n, integrating once more, we obtain 0 since v 
and its derivatives approach zero as t ~ +00 or t ~ -00. This 
proves orthogonality of (en). We prove (8) for m = n, which entails 
Ilenll = 1 by (7a). If m = n, for the last integral, call it 1, we obtain 

r+oo 
1 = Loo e- t2 dt = J;. 

This is a familiar result. To verify it, consider 12 , use polar coordinates 
r, e and ds dt = r dr de, finding 

r +00 r +00 r +00 r +00 

12 = Loo e -s' ds Loo e -t' dt = Loe Loo e -(s'+t') ds dt 

127T 1+00 
= e-" r dr de 

= 27T .! = 7T. 

This proves (8), hence the orthonormality of (en). • 

Classically speaking, one often expresses (8) by saying that the 
Hn's form an orthogonal sequence with respect to the weight function 
w2 , where w is the function defined at the beginning. 
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It can be shown that (en) defined by (7a), (7b) is total in the real 
space L 2(-00, +(0). Hence this space is separable. (Cf. 3.6-4.) 

We finally mention that the Hermite polynomials Hn satisfy the 
Hermite differential equation 

(9) 

Warning. Unfortunately, the terminology in the literature is not 
unique. In fact, the functions Hen defined by 

Heo(t) = 1, n= 1,2,'" 

are also called "Hermite polynomials" and, to make things worse, are 
sometimes denoted by Hn. 

An application of Hermite polynomials in quantum mechanics will 
be considered in Sec. 11.3. 

3.7-3 Laguerre polynomials. A total orthonormal sequence in 
L2(-00, b] or L2[a, +(0) can be obtained from such a sequence in 
L 2[0, +(0) by the transformations t = b - sand t = s + a, respectively. 

We consider L 2[0, +(0). Applying the Gram-Schmidt process to 
the sequence defined by 

-t/2 e , 2 -t/2 t e , 

we obtain an orthonormal sequence (en). It can be shown that (en) is 
total in L 2[0, +(0) and is given by (Fig. 37) 

(lOa) 

where the Laguerre polynomial of order n is defined by 

(lOb) LoU) = 1, 

that is, 

(lOc) 

e' d n n-, 
Ln(t)='-dn(te) n. t 

Ln(t) = ! (-.~)j(~)tj. )' 
j=O J. ] . 

n=O, 1,'" 

n= 1,2,"', 
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1.0 

-0.5 

Fig. 37. Functions en in (lOa) involving Laguerre polynomials 

Explicit expressions for the first few Laguerre polynomials are 

Lo(t) = 1 

(10*) 

The Laguerre polynomials Ln are solutions of the Laguerre 
differential equation 

(11) tLn" + (1- t)Ln' + nLn = O. 

For further details, see A. Erdelyi et al. (1953-55); cf. also R. 
Courant and D. Hilbert (1953-62), vol. I. 

Problems 

1. Show that the Legendre differential equation can be written 

Multiply this by P "'. Multiply the corresponding equation for Pm by 
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- Pn and add the two equations. Integrating the resulting equation 
from -1 to 1, show that (Pn ) is an orthogonal sequence in the space 
L 2 [-1,1]' 

2. Deriye (2c) from (2b). 

3. (Generating f~ction) Show that 

The function on the left is called a generating function of the Legendre 
polynomials. Generating functions are useful in connection with vari­
ous special functions; cf. R. Courant and D. Hilbert (1953-62), A. 
ErdeIyi et al. (1953-55). 

4. Show that 

where r is the distance between given points Al and A2 in R 3 , as 
shown in Fig. 38, and r2 >0. (This formula is useful in potential 
theory.) 

o£-~----------------~ Fig. 38. Problem 4 

5. Obtain the Legendre polynomials by the power series method as 
follows. Substitute x(t) = Co + C1 t + c2 t2 + ... into Legendre's equation 
and show that by determining. the coefficients one obtains the solution 
x = COXI + CIX2, where 

( ) n(n + 1) 2 (n - 2)n(n + l)(n + 3) 4 
Xl t = 1- t + t - + ... 

2! 4! 
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and 

(n-1)(n+2) 3 (n-3)(n-1)(n+2)(n+4) 5 
X2 = t- t + t - + ... 

3! 5! . 

Show that for n EN, one of these two functions reduces to a polynomial, 
which agrees with Pn if one chooses Cn = (2n)!/2n(n!)2 as the coefficient 
of tn. 

6. (Generating function) Show that 

The function on the left is called a generating function of the Hermite 
polynomials. 

7. Using (7b), show that 

8. Differentiating the generating function in Prob. 6 with respect to t, 
show that 

(n~ 1) 

and, using Prob. 7, show that Hn satisfies the Hermite differential 
equation. 

9. Solve the differential equation y" + (2n + 1- t2 )y = 0 in terms of Her­
mite polynomials. 

10. Using Prob. 8, show that 

Using this and the method explained in Prob. 1, show that the 
functions defined by (7a) are orthogonal on R. 

11. (Generating function) Using (lOc), show that 

o/(t, w)=--exp --- = L Ln(t)wn. 1 [tw] 00 

1- w 1- w n-O 
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12. Differentiating t/I in Prob. 11 with respect to w, show that 

(a) (n + l)L,.+l(t)- (2n + 1- t)Ln(t) + nLn_1(t) = 0. 

Differentiating t/I with respect to t, show that 

(b) 

13. Using Prob. 12, show that 

(c) tL~(t) = nL,.(t)- nLn- 1(t). 

Using this and (b) in Prob. 12, show that Ln satisfies Laguerre's 
differential equation (11). 

14. Show that the functions in (lOa) have norm 1. 

15. Show that the functions in (lOa) constitute an orthogonal sequence in 
the space L 2[0, +00). 

3.8 Representation of Functionals on Hilbert Spaces 

It is of practical importance to know the general form of bounded 
linear functionals on various spaces. This was pointed out and ex­
plained in Sec. 2.10. For general Banach spaces such formulas and their 
derivation can sometimes be complicated. However, for a Hilbert 
space the situation is surprisingly simple: 

3.8-1 Riesz's Theorem (Functionals on HDbert spaces). Every 
bounded linear functional f on a Hilbert space H can be represented in 
terms of the inner product, namely, 

(1) f(x) = (x, z) 

where z depends on f, is uniquely determined by f and has norm 

(2) Ilzll=llfll· 
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Proof. We prove that 
(a) f has a representation (1), 
(b) z in (1) is unique, 
(c) formula (2) holds. 

The details are as follows. 

189 

(a) If f = 0, then (1) and (2) hold if we take z = O. Let 
f~ O. To motivate the idea of the proof, let us ask what properties z 
must have if a representation (1) exists. First of all, z ~ 0 since 
otherwise f = O. Second, (x, z) = 0 for all x for which f(x) = 0, that is, 
for all x in the null space .N"(f) of f. Hence z .L .N"(f). This suggests that 
we consider .N'(f) and its orthogonal complement .N'(f).L . 

.N"(f) is a vector space by 2.6-9 and is closed by 2.7-10. Further­
more, f~ 0 implies .N"(f) ~ H, so that .N"(f).L ~ {O} by the projection 
theorem 3.3-4. Hence .N"(f).L contains a Zo ~ o. We ~et 

v = f(x)zo - f(zo)x 

where x E H is arbitrary. Applying f, we obtain 

f(v) = f(x)f(zo)- f(zo)f(x) = O. 

This show that v E .N"(f). Since Zo .L .N"(f), we have 

0= (v, zo) = (f(x)zo- f(zo)x, zo) 

= f(x)(zo, zo)- f(zo)(x, zo). 

Noting that (zo, zo) = IIzoll2 ~ 0, we can solve for f(x). The result is 

f(zo) 
f(x) =-( --) (x, zo). 

zo, Zo 

This can be written in the form (1), where 

f(zo) 
Z=--Zo· 

(zo, zo) 

Since x E H was arbitrary, (1) is proved. 
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(b) We prove that z in (1) is unique. Suppose that for all 
xEH, 

f(x) = (x, ZI) = (x, Z2). 

Then (x, Z 1- Z2) = 0 for all x. Choosing the particular x = z I - Z2, we 
have 

Hence Zl- Z2 = 0, so that ZI = Z2, the uniqueness. 

(c) We finally prove (2). If f = 0, then Z = 0 and (2) holds. 
Let f~ O. Then z ~ O. From (1) with x = z and (3) in Sec. 2.8 we obtain 

IIzll2 = (z, z) = f(z) ~ Ilfllllzll. 

Division by Ilzll ~ 0 yields Ilzll ~ IlfII. It remains to show that Ilfll ~ Ilzll. 
From (1) and the Schwarz inequality (Sec. 3.2) we see that 

If(x)1 = I(x, z)1 ~ Ilxllllzll· 

This implies 

IIfll = sup I(x, z)1 ~ liz II· 
11,,11=1 

I 

The idea of the uniqueness proof in part (b) is worth noting for 
later use: 

3.8-2 Lemma (Equality). If (Vb W) = (V2, W) for all W in an inner 
product space X, then VI = V2. In particular, (VI. w) = 0 for all W EX 
implies VI = O. 

Proof. By assumption, for all w, 

(VI - V2, W) = (Vb W)-(V2' W) = O. 

For W = VI - V2 this gives Ilvl - v2112 = O. Hence VI - V2 = 0, so that 
VI = V2. In particular, (VI. w) = 0 with W = VI gives IIvll12 = 0, so that 
VI = o. I 
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The practical usefulness of bounded linear functionals on Hilbert 
spaces results to a large extent from the simplicity of the Riesz 
representation (1). 

Furthermore, (1) is quite important in the theory of operators on 
Hilbert spaces. In particular, this refers to the Hilbert-adjoint operator 
T* of a bounded linear operator T which we shall define in. the next 
section. For this purpose we need a preparation which is of general 
interest, too. We begin with the following definition. 

3.8-3 Definition (SesquiIinear form). Let X and Y be vector spaces 
over the same field K (=R or C). Then a sesquilinear form (or 
sesquilinear functional) h on X X Y is a mapping 

such that for all x, Xl, X2 E X and y, Yh Y2 E Y and all scalars a, ~, 

(a) h(Xl+X2, y)= h(xl, y)+h(X2, y) 

(b) h(x, Yl + Y2) = h(x, Yl) + h(x, Y2) 
(3) 

(c) h(ax, y) = ah(x, Y) 

(d) h(x, ~y) = ;ih(x, y). 

Hence h is linear in the first argument and conjugate linear in the 
second one. If X and Yare real (K = R), then (3d) is simply 

h(x, ~y) = ~h(x, y) 

and h is called bilinear since it is linear in both arguments. 
If X and Yare normed spaces and if there is a real number c such 

that for all X, y 

(4) Ih(x, y)1 ~ c IIxlillylI, 

then h is said to be bounded, and the number 

(5) 

is called the norm of h. I 

sup Ih(x, y)1 
1I"1I~1 
IIYII~l 
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(6) 

Inner Product Spaces. Hilbert Spaces 

For example, the inner product is sesquilinear and bounded. 
Note that from (4) and (5) we have 

Ih(x, y)1 ~ IIhllllxllllyll· 

The term "sesquilinear" was motivated in Sec. 3.1. In Def. 3.8-3, 
both words "form" and "functional" are common, the usage of one or 
the other being largely a matter of individual taste. Perhaps it is 
slightly preferable to use "form" in this two-variable case and reserve 
the word "functional" to one-variable cases such as that in Theorem 
3.8-1. This is what we shall do. 

lt is quite interesting that from Theorem 3.8-1 we can obtain a 
general representation of sesquilinear forms on Hilbert spaces as 
follows. 

3.8-4 Theorem (Riesz representation). Let HI> H2 be Hilbert spaces 
and I::-:II ,V'-/, 

Ji: HIXH2~K 

a bounded sesquilinear form. Then h has a representation 

(7) Ax, I=y[./?~ 
/ u -+-/ :II r 

where S: HI ~ H2 is a bourrded lirWar operator. S is uniquely deter-
mined by h and has norm 

(8) 

Proof. We consider h(x, y). This is linear in y, because of the bar. 
To make Theorem 3.8-1 applicable, we keep x fixed. Then that 
theorem yields a representation in which y is variable, say, 

h(x, y)=(y, z). 

Hence 

(9) h(x, y)=(z, y). 

Here z E H2 is unique but, of course, depends on our fixed x E H t • It 
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follows that (9) with variable x defines an operator 

given by z=Sx. 

Substituting z = Sx in (9), we have (7). 
S is linear. In fact, its domain is the vector space HI. and from (7) 

and the sesquilinearity we obtain 

(S(axi + {3X2), y)= h(axi + {3X2' y) 

= ah(xl. y) + {3h(X2, y) 

= a(Sxl. y)+ {3(SX2, y) 

= (aSxI + {3SX2, y) 

for all y in H 2 , so that by Lemma 3.8-2, 

S is bounded. Indeed, leaving aside the trivial case S = 0, we have 
from (5) and (7) 

_ I(Sx, y)1 :> I(Sx, Sx)l_ IISxll_ 
IIhll- ~~~ IIxlillyll = ~~~ IIxllllSxll - ~~~ IIxll -IISII· 

y"O Sx"O 

This proves boundedness. Moreover, IIhll~IISIi. 
We now obtain (8) by noting that IIhll ~ IISII follows by an applica­

tion of the Schwarz inequality: 

S is unique. In fact, assuming that there is a linear operator 
T: HI ~ H2 such that for all x E HI and y E H2 we have 

h(x, y) = (Sx, y) = (Tx, y), 

we see that Sx = Tx by Lemma 3.8-2 for all x E Hi. Hence S = T by 
definition. • 
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Problems 

1. (Space R3) Show that any linear functional f on R3 can be represented 
by a dot product: 

2. (Space f) Show that every bounded linear functional f on 12 can be 
represented in the fonn 

~ 

f(x) = L gj~ 
j=1 

3. If z is any fixed element of an inner product space X, show that 
f(x) = (x, z) defines a bounded linear functional f on X, of norm Ilzll. 

4. Consider Prob. 3. If the mapping X ~ X' given by z 1---+ f is 
surjective, show that X must be a Hilbert space. 

5. Show that the dual space of the real space e is f. (Use 3.8-1.) 

6. Show that Theorem 3.8-1 defines an isometric bijection T: H ~ H', 
z 1---+ f. = (-, z) which is not linear but conjugate linear, that is, 

az + f3v 1---+ iif. + iifv' 

7. Show that the dual space H' of a Hilbert space H is a Hilbert space 
with inner product (', ')1 defined by 

(f .. fV)1 = (z, v)= (v, z), 

where f.(x) = (x, z), etc. 

8. Show that any Hilbert space H is isomorphic (d. Sec. 3.6) with its 
second dual space H" = (H')'. (This property is called reflexivity of H. 
It will be considered in more detail for nonned spaces in Sec. 4.6.) 

9. (AnnihDator) Explain the relation between M" in Prob. 13, Sec. 2.10, 
and M-'- in Sec. 3.3 in the case of a subset Mtf 0 of a Hilbert space H. 

10. Show that the inner product (', .) on an inner product space X is a 
bounded sesquilinear form h. What is Ilkll in this .case? 



3.9 Hilbert-Adjoint Operator 195 

11. If X is a vector space and h a sesquilinear form on X x X, show that 
fl(x) = h(x, Yo) with fixed Yo defines a linear functional fl on X, and so 
does fz(y) = h(xo, y) with fixed Xo. 

12. Let X and Y be normed spaces. Show that a bounded sesquilinear 
form h on X x Y is jointly continuous in both variables. 

13. (Hennitian fonn) Let X be a vector space over a field K. A Hermitian 
sesquilinear form or, simply, Hermitian form h on X x X is a mapping 
h: X x X ~ K such that for all x, y, Z E X and a E K, 

h(x + y, z) = h(x, z) + h(y, z) 

h(ax, y) = ah(x, y) 

h(x, y) = h(y, x). 

What is the last condition if K = R? What condition must be added for 
h to be an inner product on X? 

14. (Schwarz inequality) Let X be a vector space and h a Hermitian form 
on X x X. This form is said to be positive semidefinite if h(x, x) !i;;; 0 for 
all x E X. Show that then h satisfies the Schwarz inequality 

Ih(x, yW~ h(x, x)h(y, y). 

IS. (Seminonn) If h satisfies the conditions in Prob. 14, show that 

p(x) = .Jh(x, x) (!i;;;O) 

defines a seminorm on X. (Cf. Prob. 12, Sec. 2.3.) 

3.9 Hilbert-Adjoint Operator 

The results of the previous section will now enable us to introduce the 
Hilbert-adjoint operator of a bounded linear operator on a Hilbert 
space. This operator was suggested by problems in matrices and linear 
differential and integral equations. We shall see that it also helps to 
define three important classes of operators (called self-adjoint, unitary 
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and normal operators) which have been studied extensively because 
they play a key role in various applications. 

3.9-1 Definition (Hilbert-adjoint operator T*). Let T: Hl ~ H2 be 
a bounded linear operator, where Hl and H2 are Hilbert spaces. Then 
the Hilbert-adjoint operator T* of T is the operator 

such thatS for all x E Hl and y E H 2 , 

(1) (Tx, y)=(x, T*y). I 

Of course, we should first show that this definition makes sense, 
that is, we should prove that for a given T such a T* does exist: 

3.9-2 Theorem (Existence). The Hilbert-adjoint operator T* of T in 
Def. 3.9-1 exists, is unique and is a bounded linear operator with norm 

(2) IIT*II=IITII· 

Proof. The formula 

(3) h(y, x) = (y, Tx) 

defines a sesquilinear form on H2 X HI because the inner product is 
sesquilinear and T is linear. In fact, conjugate linearity of the form is 
seen from 

h(y, aXl + (3X2) = (y, T(axl + (3X2) 

= (y, aTxl + (3 TX2) 

= ii(y, TXl) + ji(y, TX2) 

= iih(y, Xl) + jih(y, X2). 

h is bounded. Indeed, by the Schwarz inequality, 

Ih(y, x)1 = I(y, Tx)1 ~ IlyllllTxll~ IITllllxllllyll. 

5 We may denote inner products on Hi and H2 by the same symbol since the factors 
show to which space an inner product refers. 
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This also implies Ilhll~IITlI. Moreover we have Ilhll~IITlI from 

I(y, Tx)1 I(Tx, Tx)1 
Ilhll = ~~~ Ilyllllxll > ~~~ IITxllllxl1 = IITII· 

y#O Tx"O 

Together, 

(4) Ilhll = IITII· 

Theorem 3.8-4 gives a Riesz representation for h; writing T* for S, 
we have 

(5) h(y, x) = (T*y, x), 

and we know from that theorem that T*: H2 ~ HI is a uniquely 
determined bounded linear operator with norm [cf. (4)] 

IIT*II = Ilhll = IITII· 

This proves (2). Also (y, Tx) = (T*y, x) by comparing (3) and (5), so 
that we have (1) by taking conjugates, and we now see that T* is in 
fact the operator we are looking for. I 

In our study of properties of Hilbert-adjoint operators it will be 
convenient to make use of the following lemma. 

3.9-3 Lemma (Zero operator). Let X and Y be inner product spaces 
and 0: X ~ Y a bounded linear operator. Then: 

(a) 0 = 0 if and only if (Ox, y) = 0 for all x E X and y E Y. 

(b) If 0: X~X, where X is complex, and (Ox,x)=O for all 
XEX, then 0=0. 

Proof. (a) 0 = 0 means Ox = 0 for all x and implies 

(Ox, y)=(O, y)=O(w, y)=O. 

Conversely, (Ox, y) = 0 for all x and y implies Ox = 0 for all x by 
3.8-2, so that 0 = 0 by definition. 

(b) By assumption, (Ov, v) = 0 for every v = ax + y EX, 
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that is, 

0= (O(ax + y), ax+ y) 

= lal2 (Ox, x)+(Oy, y)+a(Ox, y)+a(Oy, x). 

The first two terms on the right are zero by assumption. a = 1 gives 

(Ox, y)+(Oy, x)= o. 

a = i gives a = -i and 

(Ox, y)-(Oy, x)=O. 

By addition, (Ox, y)=O, and 0=0 follows from (a). I 

In part (b) of this lemma, it is essential that X be complex. 
Indeed, the conclusion may not hold if X is real. A counterexample is 
a rotation 0 of the plane R2 through a right angle. 0 is linear, and 
Ox .i x, hence (Ox, x) = 0 for all x E R 2 , but 0;6- O. (What about such a 
rotation in the complex plane?) 

We can now list and prove some general properties of Hilbert­
adjoint operators which one uses quite frequently in applying these 
operators. 

3.9-4 Theorem (Properties of Hilbert-adjoint operators). Let HI. H2 
be Hilbert spaces, S: HI ----+ H2 and T: HI ----+ H2 bounded linear 
operators and a any scalar. Then we have 

(a) (T*y, x) = (y, Tx) (xEHh y EH2) 

(b) (S + T)* = S* + T* 

(c) (aT)* = aT* 

(6) (d) (T*)*= T 

(e) IIT*TII = IIIT*II = IITII2 

(f) T*T=O ~ T=O 

(g) (ST)*= T*S* (~ssuming H2 = HI)' 
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Proof. (a) From (1) we have (6a): 

(T*y, x)=(x, T*y)=(Tx, y)=(y, Tx). 

(b) By (1), for all x and y, 

(x, (S+ T)*y)= «S + T)x, y) 

= (Sx, y)+(Tx, y) 

=(x, S*y)+(x, T*y) 

= (x, (S* + T*)y). 
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Hence (S + T)*y = (S* + T*)y for all y by 3.8-2, which is (6b) by 
definition. 

(c) Formula (6c) must not be confused with the formula 
T*(ax) = aT*x. It is obtained from the following calculation and 
subsequent application of Lemma 3.9-3(a) to Q = (aT)* - aT*. 

«aT)*y, x)= (y, (aT)x) 

= (y, a(Tx) 

= a(y, Tx) 

= a(T*y, x) 

= (aT*y, x). 

(d) (T*)* is written T** and equals T since for all x E Hl 
and y E H2 we have from (6a) and (1) 

«T*)*x, y)=(x, T*y)=(Tx, y) 

and (6d) follows from Lemma 3.9-3(a) with Q = (T*)* - T. 

(e) We see that T*T: Hl ~ Hb but TT*: H2~ H 2. 
By the Schwarz inequality, 

IITxl12 = (Tx, Tx) = (T*Tx, x)~IIT*Txllllxll~IIT*TllllxI12. 
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Taking the supremum over all x of norm 1, we obtain IITII2~IIT*TII. 
Applying (7), Sec. 2.7, and (2), we thus have 

Hence II T* Til = II T1I2. Replacing T by T* and using again (2), we also 
have 

Here T** = T by (6d), so that (6e) is proved. 

(f) From (6e) we immediately obtain (6f). 

(g) Repeated application of (1) gives 

(x, (ST)*y) = «ST)x, y)=(Tx, S*y)=(x, T*S*y). 

Hence (ST)*y = T* S*y by 3.8-2, which is (6g) by definition. • 

Problems 

1. Show that 0* = 0, 1* = I. 

2. Let H be a Hilbert space and T: H ~ H a bijective bounded linear 
operator whose inverse is bounded. Show that (T*r1 exists and 

3. If (Tn) is a sequence of bounded linear operators on a Hilbert space 
and Tn ~ T, show that Tn * ~ T*. 

4. Let HI and H2 be Hilbert spaces and T: HI ~ M2 a bounded linear 
operator. If Ml c HI and M2 c H2 are such that T(MI) c M 2 , show that 
M/ => T*(M/). 

5. Let Ml and M2 in Prob. 4 be closed subspaces. Show that then 
T(MI) c M2 if and only if MIl. => T*(M2.1.). 

6. If MI = .N'(T) = {x I Tx = O} in Prob. 4, show that 

(a) T*(H2)cM/, (b) [T(HI)fc.N'(T*), 
I) 
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7. Let T1 and T2 be bounded linear operators on a complex Hilbert space 
H into itself. If (T1x, x) = (T2x, x) for all x E H, show that T1 = T2. 

8. Let S = 1+ T*T: H ~ H, where T is linear and bounded. Show that 
S-1: S(H)~ H exists. 

9. Show that a bounded linear operator T: H ~ H on a Hilbert space 
H has a finite dimensional range if and only if T can be represented in 
the form 

n 

Tx = L (x, Vj}Wj 
j~1 

10. (Right shift operator) Let (en) be a total orthonormal sequence in a 
separable Hilbert space H and define the right shift operator to be the 
linear operator T: H ~ H such that Ten = en+1 for n = 1, 2,· ... 
Explain the name. Find the range, null space, norm and Hilbert­
adjoint operator of T. 

3.10 Self-Adjoint, Unitary and Normal Operators 

Classes of bounded linear operators of great practical importance can 
be defined by the use of the Hilbert-adjoint operator as follows. 

3.10-1 De6nition (Self-adjoint, unitary and normal operators). A 
bounded linear operator T: H ~ H on a Hilbert space H is said to 
be 

self-adjoint or Hermitian if 
unitary if T is bijective and 
normal if 

T*=T, 
T*=l\ 

TT*= T*T. • 
The Hilbert-adjoint operator T* of T is defined by (1), Sec. 3.9, 

that is, 

(Tx, y) = (x, T*y). 

If T is self-adjoint, we see that the formula becomes 

(1) (Tx, y) = (x, Ty). 

If T i.~ self-adjoint or unitary, T is normal. 
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This can immediately be seen from the definition. Of course, a 
normal operator need not be self-adjoint or unitary. For example, if 
I: H --+ H is the identity operator, then T = 2iI is normal since 
T*=-2iI (cf. 3.9-4), so that TT*=T*T=4I but T*~T as well as 
T* ~ T- 1 = -~iI. 

Operators which are not normal will easily result from the next 
example. Another operator which is not normal is Tin Prob. 10, Sec. 
3.9, as the reader may prove. 

The terms in Def. 3.10-1 are also used in connection with ma­
trices. We want to explain the reason for this and mention some 
important relations, as follows. 

3.10-2 Example (Matrices). We consider en with the inner product 
defined by (cf. 3.1-4) 

(2) 

where x and yare written as column vectors, and T means transposi­
tion; thus x T = (gh ... , gn), and we use the ordinary matrix multiplica­
tion. 

Let T: en --+ en be a linear operator (which is bounded by 
Theorem 2.7-8). A basis for en being given, we can represent T and 
its Hilbert-adjoint operator T* by two n-rowed square matrices, say, 
A and B, respectively. 

Using (2) and the familiar rule (BX)T = x TBT for the transposition 
of a product, we obtain 

and 

T* T-
(x, y)=x By. 

By (1), Sec. 3.9, the left-hand sides are equal for all x, y E en. Hence 
T -we must have A = B. Consequently, 

B=.,P. 

Our result is as follows. 

If a basis for en is given and a linear operator on en is represented 
by a certain matrix, then its Hilbert-adjoint operator is represented by the 
complex conjugate transpose of that matrix. 
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Consequently, representing matrices are 

Hermitian if T is self-adjoint (Hermitian), 
unitary if T is unitary, 
normal if T is normal. 

Similarly, for a linear operator T: R n ~ R n , representing ma­
trices are: 

Real symmetric if T is self-adjoint, 
orthogonal if T is unitary. 

In this connection, remember the following definitions. A square 
matrix A = (ajk) is said to be: 

Hermitian if .iF = A 
" skew-Hermitian if .iF =-A 

unitary if .iF = A-I 
normal if AAT = AT A. 

A real square matrix A = (ajk) is said to be: 

(Real) symmetric if AT = A 
(real) skew-symmetric if AT =-A 
orthogonal if AT = A-I. 

(hence tikj = ajk) 
(henceakj = -ajk) 

(hence akj = ajk) 
(hence akj = -ajk) 

Hence a real Hermitian matrix is a (real) symmetric matrix. A real 
skew-Hermitian matrix is a (real) skew-symmetric matrix. A real 
unitary matrix is an orthogonal matrix. (Hermitian matrices are named 
after the French mathematician, Charles Hermite, 1822-1901.) I 

Let us return to linear operators on arbitrary Hilbert spaces and 
state an important and rather simple criterion for self-adjointness. 

3.10-3 Theorem (SeH-adjointness). Let T: H ~ H be a bounded 
linear operator on a Hilbert space H. Then: 

(a) If T is self-adjoint, (Tx, x) is real for all x E H. 

(b) If H is complex and (Tx, x) is real for all x E H, the operator T 
is self-adjoint. 
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Proof. (a) If T is self-adjoint, then for all x, 

(Tx, x) = (x, Tx) = (Tx, x). 

Hence (Tx, x) is equal to its complex conjugate, so that it is real. 

(b) If (Tx, x) is real for all x, then 

(Tx, x) = (Tx, x) = (x, T*x) = (T*x, x). 
Hence 

0= (Tx, x)-(T*x, x) = «T- T*)x, x) 

and T- T* = 0 by Lemma 3.9-3(b) since H is complex. I 

In part (b) of the theorem it is essential that H be complex. This is 
clear since for a real H the inner product is real-valued, which makes 
(Tx, x) real without any further assumptions about the linear operator 
T. 

Products (composites6 ) of self-adjoint operators appear quite 
often in applications, so that the following theorem will be useful. 

3.10-4 Theorem (SeH-adjointness of product). The product of two 
bounded self-adjoint linear operators Sand T on a Hilbert space H is 
self-adjoint if and only if the operators commute, 

ST=TS. 

Proof. By (6g) in the last section and by the assumption, 

(ST)* = T* S* = TS. 

Hence 

ST= (ST)* ST=TS. 

This completes the proof. I 

Sequences of self-adjoint operators occur in various problems, and 
for them we have 

6 A review of terms and notations in connection with the composition of mappings is 
included in A1.2, Appendix l. 
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3.10-5 Theorem (Sequences of self-adjoint operators). Let (Tn) be 
a sequence of bounded self-adjoint linear operators Tn: H - H on a 
Hilbert space H. Suppose that (Tn) converges, say, 

that is, IITn-TII-O, 

where 11·11 is the norm on the space B(H, H); ct. Sec. 2.10. Then the limit 
operator T is a bounded self-adjoint linear operator on H. 

Proof. We must show that T* = T. This follows from IIT- T*II = O. 
To prove the latter, we use that, by 3.9-4 and 3.9-2, 

II Tn *- T*II= II(Tn - T)*II = II Tn - Til 

and obtain by the triangle inequality in B(H, H) 

IIT- T*II~IIT- Tn II + II Tn -Tn *11 + II Tn *- T*II 

=IIT-Tnll+O+IITn -Til 

=2 II Tn -Til - 0 (n- 00). 

Hence IIT- T*II = 0 and T* = T. • 

These theorems give us some idea about basic properties of 
self-adjoint linear operators. They will also be helpful in our further 
work, in particular in the spectral theory of these operators (Chap. 9), 
where further properties will be discussed. 

We now turn to unitary operators and consider some of their basic 
properties. 

3.10-6 Theorem (Unitary operator). Let the operators U: H - H 
and v: H - H be unitary; here, H is a Hilbert space. Then: 

(a) U is isometric (d. 1.6-1); thus IIUxll = IIxll for all x E H; 

(b) lIulI= 1, provided H~{O}, 

(c) U-\= U*) is unitary, 

(d) UV is unitary, 

(e) U is normal. 
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Furthermore: 

(I) A bounded linear operator T on a complex Hilbert space H is 
unitary if and only if T is isometric and surjective. 

Proof. (a) can be seen from 

IIUxIl2 =(Ux, Ux)=(x, U*Ux)=(x, Ix)=llxI12 • 

(b) follows immediately from (a). 

(c) Since U is bijective, so is U-\ and by 3.9-4, 

(U- 1)*= U**= U=(U- 1)-I. 

(d) UV is bijective, and 3.9-4 and 2.6-11 yield 

(UV)*= V*U*= y-1 U- 1 =(UV)-I. 

(e) follows from U- 1 = U* and UU- 1 = U- 1 U = 1. 

(I) Suppose that T is isometric and surjective. Isometry 
implies injectivity, so that T is bijective. We show that T* = 11. By 
the isometry, 

(T*Tx, x) = (Tx, Tx) = (x, x) = (Ix, x). 

Hence 

«T*T- I) x, x) = 0 

and T*T-I=O by Lemma 3.9-3(b), so that T*T=1. From this, 

Together, T*T= TJ'* = 1. Hence T* = 1\ so that T is unitary. The 
converse is clear since T is isometric by (a) and surjective by 
definition. I 

Note that an isometric operator need not be unitary since it may 
fail to be surjective. An example is the right shift operator T: 12 ~ 12 
given by 
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Problems 

1. If Sand T are bounded self-adjoint linear operators on a Hilbert space 
H and a and f3 are real, show that f = as + f3T is self-adjoint. 

2. How could we use Theorem 3.10-3 to prove Theorem 3.10-5 for a 
complex Hilbert space H? 

3. Show that if T: H ---- H is a bounded self-adjoint linear operator, so 
is Tn, where n is a positive integer. 

4. Show that for any bounded linear operator T on H, the operators 

1 
Tl =2: (T+ T*) 

are self-adjoint. Show that 

and 
1 

T =-(T-T*) 
2 2i 

Show uniqueness, that is, Tl + iT2 = SI + iS2 implies SI = Tl and 
.82 = T2 ; here, SI and S2 are self-adjoint by assumption. 

5. On e2 (cf. 3.1-4) let the operator T: e2 ____ e2 be defined by 
Tx = (gl + ig2, gl - ig2), where x = (gl, g2)' Find T*. Show that we 
have T*T= TT* = 2I. Find TI and T2 as defined in Prob. 4. 

6. If T: H ---- H is a bounded self-adjoint linear operator and T'" 0, 
then Tn", O. Prove this (a) for n = 2,4,8, 16, ... , (b) for every n EN. 

7. Show that the column vectors of a unitary matrix constitute an or­
thonormal set with respect to the inner product on en. 

8. Show that an isometric linear operator T: H ---- H satisfies T* T = [, 

where [ is the identity operator on H. 

9. Show that an isometric linear operator T: H ---- H which is not 
unitary maps the Hilbert space H onto a proper closed subspace of H. 

10. Let X be an inner product space and T: X ---- X an isometric linear 
operator. If dim X < 00, show that T is unitary. 

11. (Unitary equivalence) Let Sand T be linear operators on a Hilbert 
space H. The operator S is said to be unitarily equivalent to T if there 
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is a unitary operator U on H such that 

S = UTU- 1 = UTU*. 

If T is self-adjoint, show that S is self-adjoint. 

12. Show that T is normal if and only if Tl and T2 in Prob. 4 commute. 
IlIustrate part of the situation by two-rowed normal matrices. 

13. If Tn: H ~ H (n = 1,2,···) are normal linear operators and 
Tn ~ T, show that T is a normal linear operator. 

14. If Sand T are normal linear operators satisfying ST* = T* Sand 
TS* = S* T, show that their sum S + T and product ST are normal. 

15. Show that a bounded linear operator T: H ~ H on a complex 
Hilbert space H is normal if and only if IIT*xll = IITxl1 for all x E H. 
Using this, show that for a normal linear operator, 
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